
Terminale S
Suites numériques

1 Raisonnement par récurrence

1.1 Introduction

En Mathématiques, un certain nombre de propriétés dépendent d’un entier naturel n. Par exemple, la

somme des entiers naturels de 1 à n est égale à
n(n+ 1)

2
.

On peut vérifier l’exactitude de ce résultat pour n = 2, n = 3, etc :

pour n = 2 : 1 + 2 = 3 et
2(2 + 1)

2
= 3

pour n = 3 : 1 + 2 + 3 = 6 et
3(3 + 1)

2
= 6

Même si on le vérifie jusqu’à n = 100, cela ne démontre pas que ce résultat est vrai pour tout n.
Pour effectuer cette démonstration, on dispose d’un outil particulier : le raisonnement par récurrence.
Idée : Le raisonnement par récurrence "est un instrument qui permet de passer du fini à l’infini"

(Poincaré). Le principe est le suivant : si on peut se placer d’abord sur un barreau d’une échelle, et si on
peut ensuite passer d’un barreau quelconque à son suivant, alors on peut gravir tous les barreaux de cette
échelle.

1.2 Principe de récurrence

Pour démontrer par récurrence qu’une proposition Pn est vraie pour tout entier naturel n ≥ n0, (n0

un entier naturel quelconque, en général 0 ou 1), on procède en trois étapes :
— Initialisation : on vérifie que Pn0 est vraie, c’est-à-dire que Pn est vraie pour n = n0.

C’est le premier barreau de l’échelle.
— Hérédité : On suppose que pour un entier k quelconque, la proposition Pk est vraie. Sous cette

hypothèse, on démontre que la proposition Pk+1 est vraie.
C’est le passage d’un barreau quelconque au suivant.

— Conclusion : Pn est vraie pour tout entier n ≥ n0.

1.3 Exemple

Montrons que
n∑

q=1

q = 1 + 2 + . . .+ n =
n(n+ 1)

2
.

Initialisation : montrons que Pn est vraie au rang 1, c’est-à-dire que P1 est vraie :
1(1 + 1)

2
= 1 ; c’est vérifié.

Hérédité : supposons que, pour un certain rang k, Pk est vraie, c’est-à-dire que :

1 + 2 + . . .+ k =
k(k + 1)

2
.

Montrons alors que Pk+1 est vraie : c’est-à-dire que : 1 + 2 + . . .+ (k + 1) =
(k + 1)(k + 2)

2
.

Or 1 + 2 + . . .+ (k + 1) =
k(k + 1)

2
+ (k + 1) = (k + 1)

(
k

2
+ 1

)
=

(k + 1)(k + 2)

2
. cqfd

Conclusion : la propriété Pn est vraie pour tout n ≥ 1, c’est-à-dire : 1 + 2 + . . .+ n =
n(n+ 1)

2
.
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2 Comportement d’une suite numérique

Par "étudier le comportement de la suite (un)", on sous-entend étudier les propriétés du nombre un
lorsque l’entier n devient de plus en plus grand (variations, encadrement, comportement à l’infini . . . ).

2.1 Suites majorées, minorées, bornées

Définitions
Soient M et m deux nombres réels. On dit que la suite (un) est :

— majorée par M si pour tout n ∈ N, un ≤M .

— minorée par m si pour tout n ∈ N, un ≥ m.

— bornée si pour tout n ∈ N,m ≤ un ≤M .

Exemples

— Soit la suite

(
1

n

)
n≥1

= {1/1; 1/2; 1/3; . . .}.

Pour tout n ∈ N∗, 1
n > 0. Cette suite est donc minorée par 0, mais aussi par tout réel négatif : un

minorant n’est donc pas unique. Elle est aussi majorée par 1 et par tout réel x ≥ 1.

— Soit la suite (n2)n≥0 = {0; 1; 4; . . .}.

Pour tout n ∈ N, n2 ≥ 0. Cette suite est minorée par 0 et par tout réel négatif ; en plus ici, 0 est le
minimum de la suite, atteint au rang 0. Cette suite n’est pas majorée.

2.2 Limite finie d’une suite

Définitions
La suite (un) admet pour limite le réel ` si tout intervalle ouvert contenant ` contient toutes les valeurs

de un à partir d’un certain rang.

On écrit alors : lim
n→∞

un = `

Interprétation graphique :

2.3 Limite infinie d’une suite

Définitions
Soit A ∈ R. La suite (un) admet pour limite +∞ (resp. −∞) si tout intervalle de la forme ]A; +∞[

(resp. ]−∞;A[) contient toutes les valeurs de un à partir d’un certain rang.

Bernelas - Bays - Desclaux 2 Lycée Les Eucalyptus 2019-2020



p

up
A

n

un

On écrit alors : lim
n→∞

un = +∞ (resp. −∞)

Interprétation graphique :

2.4 Limites des suites usuelles

Théorèmes
lim

n→+∞
n = +∞ lim

n→+∞
n2 = +∞ lim

n→+∞

√
n = +∞

lim
n→+∞

1

n
= 0 lim

n→+∞

1

n2
= 0 lim

n→+∞

1
√
n
= 0

Pour tout entier k ≥ 1 : lim
n→+∞

nk = +∞ lim
n→+∞

1

nk
= 0

Preuve de lim
n→+∞

n2 = +∞ : soit A un réel quelconque.

Si A ≤ 0 alors n2 > A pour tout n ≥ 1 ; on choisit donc N = 1.

Si A > 0, pour tout entier n >
√
A, on a n2 > A, car la fonction carrée est strictement croissante sur

]0; +∞[. Soit N le plus petit entier tel que N >
√
A ; alors ∀n ≥ N on a n2 > A.

Donc lim
n→+∞

n2 = +∞

3 Opérations sur les limites

3.1 Somme de deux suites

Somme de deux suites

limn→+∞ un ` ` ` +∞ −∞ +∞
limn→+∞ vn `′ +∞ −∞ +∞ −∞ −∞
limn→+∞ un + vn `+ `′ +∞ −∞ +∞ −∞ F. I.

F. I. = forme indéterminée ; on ne connaît pas à priori la réponse.

3.2 Produit de deux suites

limn→+∞ un ` ` 6= 0 0
ou ±∞

limn→+∞ vn `′ ±∞ ±∞
limn→+∞ un × vn `× `′ ±∞R. S. F. I.

R. S. = règle des signes.
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3.3 Quotient de deux suites

limn→+∞ un ` ` 0 ` 6= 0 ±∞ ±∞
limn→+∞ vn `′ 6= 0 ±∞ 0 0 `′ ±∞

limn→+∞
un
vn

`

`′
0 F. I. ±∞R. S. ±∞R. S. F. I.

La règle des signes s’applique si vn est de signe constant sinon il n’y a pas de limite.

3.4 Exemple

Etudier la limite de la suite (un) définie sur N par : un =
2

3n+ 5
lim

n→+∞
2 = 2 et lim

n→+∞
(3n+ 5) = +∞

Donc par quotient : lim
n→+∞

2

3n+ 5
= 0.

3.5 Formes indéterminées

Les cas des formes indéterminées nécessitent une étude particulière chaque fois qu’ils se présentent.
Pour les mémoriser, on les note "∞−∞", "0×∞", " 0

0 ", " ∞∞ ", mais ces écritures ne doivent jamais être
utilisées dans une rédaction.

Le principe est toujours le même pour "lever" une indétermination : il faut changer l’écriture de la
suite.

Exemple 1 : un = 3n2 − n− 5

lim
n→+∞

3n2 = +∞ et lim
n→+∞

(−n− 5) = −∞, donc lim
n→+∞

3n2 − n− 5 = F. I. ("∞−∞").

Changement d’écriture : un = n2(3− 1
n −

5
n2 )

lim
n→+∞

n2 = +∞ et lim
n→+∞

(3− 1

n
− 5

n2
) = 3, donc par produit lim

n→+∞
un = +∞.

Exemple 2 : un =
3n+ 5

−2n+ 7

lim
n→+∞

(3n+ 5) = +∞ et lim
n→+∞

(−2n+ 7) = −∞, donc lim
n→+∞

un = F. I. (" ∞∞ ").

Changement d’écriture : un =
n(3+ 5

n
)

n(−2+ 7
n
)
=

3+ 5
n

−2+ 7
n

, (n 6= 0),

lim
n→+∞

(3 +
5

n
) = 3 et lim

n→+∞
(−2 + 7

n
) = −2, donc par quotient lim

n→+∞
un = −3

2
.

Exemple 3 : un = n−
√
n

lim
n→+∞

n = +∞ et lim
n→+∞

(−
√
n) = −∞, donc lim

n→+∞
un = F. I. ("∞−∞").

Changement d’écriture : un = n−
√
n = n(1−

√
n
n ) = n(1− 1√

n
)

lim
n→+∞

n = +∞ et lim
n→+∞

(1− 1√
n
) = 1, donc par produit lim

n→+∞
un = +∞

4 Limites et comparaison

4.1 Comparaison

Théorèmes
Soient deux suites (un) et (vn) et un entier naturel N tels que pour tout entier n ≥ N , un ≤ vn.
— Minoration : si lim

n→+∞
un = +∞, alors lim

n→+∞
vn = +∞
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— Majoration : si lim
n→+∞

vn = −∞, alors lim
n→+∞

un = −∞

Démonstration du théorème de minoration (ROC) :
On suppose que lim

n→+∞
un = +∞

Il s’agit de démontrer que tout intervalle de la forme ]A; +∞[ contient toutes les valeurs de vn à partir
d’un certain rang.

Soit A un réel. Comme lim
n→+∞

un = +∞, l’intervalle ]A; +∞[ contient tous les un à partir d’un rang

p : ∀n ≥ p, un > A.
Alors pour tout n ≥ p, on a vn ≥ un > A, donc vn ∈]A; +∞[.
On en déduit que lim

n→+∞
vn = +∞

La démonstration est analogue pour le théorème de majoration.

Théorème "des gendarmes" (admis)
On considère trois suites (un) , (vn) et (wn). Soit un entier N et un réel `. On suppose que pour tout

entier n ≥ N , on a un ≤ vn ≤ wn.
Si les suites (un) et (wn) convergent vers la même limite `, alors la suite (vn) converge également

vers `.

4.2 Cas des suites monotones et convergentes

Théorème
Soit une suite (un) convergeant vers un réel `. Si la suite (un) est croissante, alors elle est majorée

par `, c’est-à-dire que pour tout entier naturel n, un ≤ `.

5 Convergence de certaines suites

5.1 Convergence des suites monotones

Théorème
Si (un) est une suite croissante et majorée, alors elle converge.
Si (un) est une suite décroissante et minorée, alors elle converge.

Attention : Ce théorème ne donne pas la valeur de la limite de la suite, mais seulement son existence
et un majorant, ou un minorant, de la suite.

Corollaire : une suite croissante non majorée a pour limite +∞.

Preuve (ROC) : soit (un) une suite croissante non majorée et soit A ∈ R.
Comme (un) n’est pas majorée, il existe au moins un entier p tel que up > A.
Comme (un) est croissante, on a ∀n ≥ p, un ≥ up, d’où ∀n ≥ p, un > A.
Donc à partir du rang p, tous les termes de la suite appartiennent à ]A; +∞[.
Conclusion : lim

n→+∞
un = +∞

5.2 Limite d’une suite géométrique

Théorème
Soit q un réel.
Si q > 1, alors la suite (qn) diverge vers +∞ : lim

n→+∞
qn = +∞.

Si −1 < q < 1, alors la suite (qn) converge vers 0 : lim
n→+∞

qn = 0.

Si q ≤ −1, alors la suite (qn) diverge et n’admet pas de limite.

Preuve pour q > 1 (ROC) : montrons d’abord par récurrence la propriété Pn : pour tout n ∈ N, avec
a réel positif, (1 + a)n ≥ 1 + na.

— Initialisation : pour n = 0, (1 + a)0 = 1 et 1 + 0× a = 1 ; donc P0 est vraie.
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— Hérédité : supposons que pour un certain entier k, Pk est vraie, soit (1+a)k ≥ 1+ka et montrons
alors que Pk+1 est vraie, c’est-à-dire (1 + a)k+1 ≥ 1 + (k + 1)a ;
(1 + a)k+1 = (1 + a)k × (1 + a) et (1 + a)k ≥ 1 + ka d’après l’hypothèse de récurrence.
On en déduit que (1 + a)k+1 ≥ (1 + ka)(1 + a) car 1 + a > 0.
Ainsi : (1 + a)k+1 ≥ 1 + ka+ a+ ka2 ≥ 1 + (k + 1)a car ka2 > 0, et Pk+1 est vraie.

— Conclusion : Nous avons montré la propriété Pn pour tout n ∈ N : si a ≥ 0, (1 + a)n ≥ 1 + na.

On pose maintenant q = 1 + a avec a > 0, donc q > 1.
Alors qn ≥ 1 + na, d’après la propriété Pn.
Or lim

n→+∞
(1 + na) = +∞, car a > 0.

Donc d’après le théorème de minoration : lim
n→+∞

qn = +∞.
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