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Définition
Soient a et b deux réels quelconques tels que a < b, f une
fonction continue et positive sur [a;b] et C sa courbe
représentative dans un repère orthogonal (O; I, J).
L’unité d’aire est l’aire du rectangle de côtés [OI] et [OJ].
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Définition
Soient a et b deux réels quelconques tels que a < b, f une
fonction continue et positive sur [a;b] et C sa courbe
représentative dans un repère orthogonal (O; I, J).
L’unité d’aire est l’aire du rectangle de côtés [OI] et [OJ].

On appelle intégrale de f sur [a;b], l’aire, exprimée en unités
d’aire, de la surface limitée par l’axe des abscisses, la courbe
C, et les droites d’équations x = a et x = b.

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Définition
Remarque
Théorème
Démonstration

L’intégrale de f sur [a;b] se note
∫ b

a
f (x)dx .

On dit aussi que
∫ b

a
f (x)dx représente l’aire sous la courbe

entre a et b.
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Dans l’écriture
∫ b

a
f (x)dx , x est une lettre " muette ". On peut la

remplacer par n’importe qu’elle autre lettre, exceptées a et b :∫ b

a
f (x)dx =

∫ b

a
f (t)dt =

∫ b

a
f (u)du =

∫ b

a
f (z)dz =

∫ b

a
f (α)dα = . . .

∫ b

a
f (x)dx se lit aussi " somme de a à b de f (x)dx ".
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Théorème
Soit f une fonction continue et positive sur [a;b] ; la fonction F

définie sur [a;b] par F (x) =
∫ x

a
f (t)dt . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
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Théorème
Soit f une fonction continue et positive sur [a;b] ; la fonction F

définie sur [a;b] par F (x) =
∫ x

a
f (t)dt est dérivable sur [a;b]

et F ′(x) = f (x) pour tout x de [a;b].

De plus F (a) = 0.
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Démonstration dans le cas où f est croissante
Pour tout x ∈ [a;b] et h > 0, . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ainsi F (x + h)− F (x) est . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Pour tout x ∈ [a;b] et h > 0, F (x) =
∫ x

a
f (t)dt et

F (x + h) =
∫ x+h

a
f (t)dt .

Ainsi F (x + h)− F (x) est . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Démonstration dans le cas où f est croissante

Pour tout x ∈ [a;b] et h > 0, F (x) =
∫ x

a
f (t)dt et

F (x + h) =
∫ x+h

a
f (t)dt .

Ainsi F (x + h)− F (x) est l’aire de la surface limitée par la
courbe C, l’axe des abscisses et les droites verticales passant
par les points d’abscisses x et x + h.
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On a donc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Puisque la fonction f est continue, lim
h→0

f (x + h) = . . . donc,

d’après le théorème des gendarmes,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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On a donc hf (x) ≤ F (x + h)− F (x) ≤ hf (x + h), ce qui, dans le
cas où f est croissante, entraîne que

f (x) ≤
F (x + h)− F (x)

h
≤ f (x + h).

Puisque la fonction f est continue, lim
h→0

f (x + h) = . . . donc,
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Puisque la fonction f est continue, lim
h→0

f (x + h) =f (x) donc,

d’après le théorème des gendarmes,

lim
h→0

F (x + h)− F (x)
h

= f (x) ce qui signifie que F est dérivable

en x et F ′(x) = f (x) pour tout x ∈ [a;b].
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Soit f une fonction continue sur un intervalle I.
On dit qu’une fonction F est une primitive de la fonction f sur I
si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

" F est une primitive de f sur I " a le même sens que . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sinon, on admet que f a un mininum m sur [a;b] et on défini
une fonction g sur [a;b], par g(x) = f (x)−m ;
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une fonction g sur [a;b], par g(x) = f (x)−m ;
g est continue et positive sur [a;b], donc admet une primitive G

définie par G(x) =
∫ x

a
g(t)dt . Alors la fonction F définie par

F (x) = G(x) + mx est une primitive de f sur [a;b].
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Toutes les primitives de f sur I sont les fonctions G définies sur
I par G(x) = F (x) + c où c est un nombre réel quelconque.
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fonction G définie sur I par G(x) = F (x) + c où c est un
nombre réel quelconque, est aussi une primitive de f sur I.

Toutes les primitives de f sur I sont les fonctions G définies sur
I par G(x) = F (x) + c où c est un nombre réel quelconque.
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En particulier, si I = [a;b] et si F est la fonction définie sur [a;b]

par F (x) =
∫ x

a
f (t)dt alors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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condition F (x0) = y0 implique c = y0 −G(x0) et c est unique.

En particulier, si I = [a;b] et si F est la fonction définie sur [a;b]

par F (x) =
∫ x

a
f (t)dt alors F est l’unique primitive de f qui

s’annule en a.
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Détermination des primitives d’une fonction
On cherche dans le tableau des dérivées usuelles en le lisant
de droite à gauche et on utilise les résultats suivants :

• si F est une primitive de f sur I et si G est une primitive de g
sur I alors F + G est une primitive de f + g sur I.

• si F est une primitive de f sur I et si k est un nombre réel
quelconque alors kF est une primitive de kf sur I.

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Définition
Théorème
Théorème
Théorème
Détermination des primitives d’une fonction
Primitives des fonctions usuelles

Détermination des primitives d’une fonction
On cherche dans le tableau des dérivées usuelles en le lisant
de droite à gauche et on utilise les résultats suivants :

• si F est une primitive de f sur I et si G est une primitive de g
sur I alors F + G est une primitive de f + g sur I.

• si F est une primitive de f sur I et si k est un nombre réel
quelconque alors kF est une primitive de kf sur I.

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Définition
Théorème
Théorème
Théorème
Détermination des primitives d’une fonction
Primitives des fonctions usuelles

Détermination des primitives d’une fonction
On cherche dans le tableau des dérivées usuelles en le lisant
de droite à gauche et on utilise les résultats suivants :

• si F est une primitive de f sur I et si G est une primitive de g
sur I alors F + G est une primitive de f + g sur I.

• si F est une primitive de f sur I et si k est un nombre réel
quelconque alors kF est une primitive de kf sur I.

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Définition
Théorème
Théorème
Théorème
Détermination des primitives d’une fonction
Primitives des fonctions usuelles

Pour chacune des fonctions f suivantes, la fonction F est une
primitive de f sur l’intervalle I donné :

Fonction f Intervalle I Primitive F

f (x) = a , a ∈ R I = R

F (x) = ax

f (x) = xn , n ∈ N∗ I = R F (x) = 1
n+1xn+1

f (x) = 1
x2 ]−∞;0[ ou ]0 : +∞[ F (x) = − 1

x

f (x) = 1√
x I =]0 : +∞[ F (x) = 2

√
x
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. . . . . . . . . . . . . . . . . .
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Il reste à démontrer que l’intégrale de f ne dépend pas du choix
de la primitive :
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fonction G définie par G(x) =
∫ x

a
f (t)dt .

G(b) =
∫ b

a
f (t)dt et G(a) = 0 donc on a bien

G(b)−G(a) =
∫ b

a
f (t)dt .

Il reste à démontrer que l’intégrale de f ne dépend pas du choix
de la primitive :
si F une primitive quelconque de f , alors F (x) = G(x) + c et
on vérifie alors que F (b)− F (a) = G(b)−G(a).
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On généralise la notion d’intégrale :

Définition
soit f une fonction continue sur un intervalle I, a et b deux réels
quelconques de I et F une primitive de f sur I.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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On note :
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Définition
soit f une fonction continue sur un intervalle I, a et b deux réels
quelconques de I et F une primitive de f sur I.
On appelle intégrale entre a à b de la fonction f le nombre
F (b)− F (a).
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On appelle intégrale entre a à b de la fonction f le nombre
F (b)− F (a).
On note : ∫ b

a
f (x)dx = F (b)− F (a)

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Propriété
Définition
Exemple
Propriétés

Exemple

Pour x > 0,
∫ x

1

1
t

dt = ln x − ln1 = ln x
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Soit f et g deux fonctions continues sur un intervalle I, a, b et c
des éléments de I.

Propriétés

. . . . . . . . . . . . . . . . . .

Inversion des bornes

. . . . . . . . . . . . . . . . . .

Démonstration immédiate à l’aide de la définition.
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Soit f et g deux fonctions continues sur un intervalle I, a, b et c
des éléments de I.

Propriétés

. . . . . . . . . . . . . . . . . .

Inversion des bornes

. . . . . . . . . . . . . . . . . .

Démonstration immédiate à l’aide de la définition.
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Propriété
Définition
Exemple
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Soit f et g deux fonctions continues sur un intervalle I, a, b et c
des éléments de I.

Propriétés ∫ a

a
f (x)dx = 0

Inversion des bornes

. . . . . . . . . . . . . . . . . .

Démonstration immédiate à l’aide de la définition.
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Soit f et g deux fonctions continues sur un intervalle I, a, b et c
des éléments de I.

Propriétés ∫ a

a
f (x)dx = 0

Inversion des bornes

. . . . . . . . . . . . . . . . . .

Démonstration immédiate à l’aide de la définition.
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Intégrale d’une fonction continue
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Propriété
Définition
Exemple
Propriétés

Soit f et g deux fonctions continues sur un intervalle I, a, b et c
des éléments de I.

Propriétés ∫ a

a
f (x)dx = 0

Inversion des bornes∫ b

a
f (x)dx = −

∫ a

b
f (x)dx

Démonstration immédiate à l’aide de la définition.

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale
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Propriété
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Propriétés

Soit f et g deux fonctions continues sur un intervalle I, a, b et c
des éléments de I.

Propriétés ∫ a

a
f (x)dx = 0

Inversion des bornes∫ b

a
f (x)dx = −

∫ a

b
f (x)dx

Démonstration immédiate à l’aide de la définition.
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Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Propriété
Définition
Exemple
Propriétés

Propriétés
Relation de Chasles

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Démonstration immédiate à l’aide de la définition.

Linéarité : si k est un réel quelconque, alors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Démonstration presque immédiate à l’aide de la définition.
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Propriété
Définition
Exemple
Propriétés

Propriétés
Relation de Chasles∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx

Démonstration immédiate à l’aide de la définition.

Linéarité : si k est un réel quelconque, alors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Démonstration presque immédiate à l’aide de la définition.
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Propriétés
Relation de Chasles∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx

Démonstration immédiate à l’aide de la définition.

Linéarité : si k est un réel quelconque, alors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Démonstration presque immédiate à l’aide de la définition.
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Propriété
Définition
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Propriétés

Propriétés
Relation de Chasles∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx

Démonstration immédiate à l’aide de la définition.

Linéarité : si k est un réel quelconque, alors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Démonstration presque immédiate à l’aide de la définition.
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Propriété
Définition
Exemple
Propriétés

Propriétés
Relation de Chasles∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx

Démonstration immédiate à l’aide de la définition.

Linéarité : si k est un réel quelconque, alors∫ b

a
kf (x)dx = k

∫ b

a
f (x)dx

Démonstration presque immédiate à l’aide de la définition.
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Propriété
Définition
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Propriétés

Propriétés
Relation de Chasles∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx

Démonstration immédiate à l’aide de la définition.

Linéarité : si k est un réel quelconque, alors∫ b

a
kf (x)dx = k

∫ b

a
f (x)dx

Démonstration presque immédiate à l’aide de la définition.
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Définition
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Propriétés
Linéarité

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Démonstration presque immédiate à l’aide de la définition.
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Intégrale d’une fonction continue
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Intégrales et inégalités

Propriété
Définition
Exemple
Propriétés

Propriétés
Linéarité∫ b

a
(f (x) + g(x))dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx

Démonstration presque immédiate à l’aide de la définition.
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Propriétés

Propriétés
Linéarité∫ b

a
(f (x) + g(x))dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx

Démonstration presque immédiate à l’aide de la définition.
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Intégrales et inégalités

Soit f et g deux fonctions continues sur [a;b].

Calcul d’aires
L’aire, exprimée en unités d’aire, de la surface délimitée par la
courbe Cf , l’axe des abscisses et les droites d’équations x = a
et x = b est :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Soit f et g deux fonctions continues sur [a;b].

Calcul d’aires
L’aire, exprimée en unités d’aire, de la surface délimitée par la
courbe Cf , l’axe des abscisses et les droites d’équations x = a
et x = b est :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Soit f et g deux fonctions continues sur [a;b].

Calcul d’aires
L’aire, exprimée en unités d’aire, de la surface délimitée par la
courbe Cf , l’axe des abscisses et les droites d’équations x = a
et x = b est :

A =

∫ b

a
f (x)dx si f est positive sur [a;b]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Soit f et g deux fonctions continues sur [a;b].

Calcul d’aires
L’aire, exprimée en unités d’aire, de la surface délimitée par la
courbe Cf , l’axe des abscisses et les droites d’équations x = a
et x = b est :

A =

∫ b

a
f (x)dx si f est positive sur [a;b]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Soit f et g deux fonctions continues sur [a;b].

Calcul d’aires
L’aire, exprimée en unités d’aire, de la surface délimitée par la
courbe Cf , l’axe des abscisses et les droites d’équations x = a
et x = b est :

A =

∫ b

a
f (x)dx si f est positive sur [a;b]

A = −
∫ b

a
f (x)dx si f est négative sur [a;b]
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Soit f et g deux fonctions continues sur [a;b].

Calcul d’aires
L’aire, exprimée en unités d’aire, de la surface délimitée par la
courbe Cf , l’axe des abscisses et les droites d’équations x = a
et x = b est :

A =

∫ b

a
f (x)dx si f est positive sur [a;b]

A = −
∫ b

a
f (x)dx si f est négative sur [a;b]
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Calcul d’aires
si f (x) ≥ g(x) sur [a;b], alors l’aire, exprimée en unités d’aire,
de la surface délimitée par les courbes Cf et Cg et les droites
d’équations x = a et x = b est :

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Calcul d’aires
si f (x) ≥ g(x) sur [a;b], alors l’aire, exprimée en unités d’aire,
de la surface délimitée par les courbes Cf et Cg et les droites
d’équations x = a et x = b est :

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Calcul d’aires
si f (x) ≥ g(x) sur [a;b], alors l’aire, exprimée en unités d’aire,
de la surface délimitée par les courbes Cf et Cg et les droites
d’équations x = a et x = b est :

A =

∫ b

a
(f (x)− g(x))dx
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Calcul d’aires
si f (x) ≥ g(x) sur [a;b], alors l’aire, exprimée en unités d’aire,
de la surface délimitée par les courbes Cf et Cg et les droites
d’équations x = a et x = b est :

A =

∫ b

a
(f (x)− g(x))dx
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Positivité
Intégration d’une inégalité
Encadrement
Valeur moyenne

Positivité
si a ≤ b et si f (x) ≥ 0 pour tout x ∈ [a;b] alors

. . . . . . . . . . . . . . . . . . . . .

Démonstration : par définition,
∫ b

a
f (x)dx = F (b)− F (a) où F

une primitive de f sur [a;b], c’est-à-dire F ′ = f ;
donc, si f (x) ≥ 0 pour tout x ∈ [a;b], alors F est croissante sur
[a;b] ;
donc F (b) ≥ F (a) et F (b)− F (a) ≥ 0.

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Positivité
Intégration d’une inégalité
Encadrement
Valeur moyenne

Positivité
si a ≤ b et si f (x) ≥ 0 pour tout x ∈ [a;b] alors∫ b

a
f (x)dx ≥ 0

Démonstration : par définition,
∫ b

a
f (x)dx = F (b)− F (a) où F

une primitive de f sur [a;b], c’est-à-dire F ′ = f ;
donc, si f (x) ≥ 0 pour tout x ∈ [a;b], alors F est croissante sur
[a;b] ;
donc F (b) ≥ F (a) et F (b)− F (a) ≥ 0.
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Positivité
si a ≤ b et si f (x) ≥ 0 pour tout x ∈ [a;b] alors∫ b

a
f (x)dx ≥ 0

Démonstration : par définition,
∫ b

a
f (x)dx = F (b)− F (a) où F

une primitive de f sur [a;b], c’est-à-dire F ′ = f ;

donc, si f (x) ≥ 0 pour tout x ∈ [a;b], alors F est croissante sur
[a;b] ;
donc F (b) ≥ F (a) et F (b)− F (a) ≥ 0.
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Positivité
si a ≤ b et si f (x) ≥ 0 pour tout x ∈ [a;b] alors∫ b

a
f (x)dx ≥ 0

Démonstration : par définition,
∫ b

a
f (x)dx = F (b)− F (a) où F

une primitive de f sur [a;b], c’est-à-dire F ′ = f ;
donc, si f (x) ≥ 0 pour tout x ∈ [a;b], alors F est croissante sur
[a;b] ;

donc F (b) ≥ F (a) et F (b)− F (a) ≥ 0.
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Positivité
si a ≤ b et si f (x) ≥ 0 pour tout x ∈ [a;b] alors∫ b

a
f (x)dx ≥ 0

Démonstration : par définition,
∫ b

a
f (x)dx = F (b)− F (a) où F

une primitive de f sur [a;b], c’est-à-dire F ′ = f ;
donc, si f (x) ≥ 0 pour tout x ∈ [a;b], alors F est croissante sur
[a;b] ;
donc F (b) ≥ F (a) et F (b)− F (a) ≥ 0.
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Théorème
Soit f et g deux fonctions continues sur [a;b].
Si a ≤ b et si f (x) ≤ g(x) pour tout x ∈ [a;b], alors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pour la démonstration, considérer la fonction h = g − f .
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Théorème
Soit f et g deux fonctions continues sur [a;b].
Si a ≤ b et si f (x) ≤ g(x) pour tout x ∈ [a;b], alors∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx

Pour la démonstration, considérer la fonction h = g − f .
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Théorème
Soit f et g deux fonctions continues sur [a;b].
Si a ≤ b et si f (x) ≤ g(x) pour tout x ∈ [a;b], alors∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx

Pour la démonstration, considérer la fonction h = g − f .
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Soit f une fonction continue, positive et croissante sur [a;b] et n
un entier strictement positif.

On partage [a;b] en n intervalles d’amplitude h =
b − a

n
.

Sur chaque intervalle [a + ih;a + (i + 1)h], où i varie de 0 à
n − 1, on a l’encadrement

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Donc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., où à
gauche et à droite, les produits sont des aires de rectangles.
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Soit f une fonction continue, positive et croissante sur [a;b] et n
un entier strictement positif.

On partage [a;b] en n intervalles d’amplitude h =
b − a

n
.

Sur chaque intervalle [a + ih;a + (i + 1)h], où i varie de 0 à
n − 1, on a l’encadrement
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Soit f une fonction continue, positive et croissante sur [a;b] et n
un entier strictement positif.

On partage [a;b] en n intervalles d’amplitude h =
b − a

n
.

Sur chaque intervalle [a + ih;a + (i + 1)h], où i varie de 0 à
n − 1, on a l’encadrement

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Donc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., où à
gauche et à droite, les produits sont des aires de rectangles.
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On obtient alors l’encadrement suivant :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Positivité
Intégration d’une inégalité
Encadrement
Valeur moyenne

On obtient alors l’encadrement suivant :

h
n−1∑
i=0

f (a + ih) ≤
∫ b

a
f (x)dx ≤ h

n−1∑
i=0

f (a + (i + 1)h)

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Positivité
Intégration d’une inégalité
Encadrement
Valeur moyenne

On obtient alors l’encadrement suivant :

h
n−1∑
i=0

f (a + ih) ≤
∫ b

a
f (x)dx ≤ h

n−1∑
i=0

f (a + (i + 1)h)

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Positivité
Intégration d’une inégalité
Encadrement
Valeur moyenne

V. B. J. D. S. B. Diaporama du cours



Intégrale d’une fonction continue et positive
Primitives et intégrale

Intégrale d’une fonction continue
Calcul d’aires

Intégrales et inégalités

Positivité
Intégration d’une inégalité
Encadrement
Valeur moyenne

Algorithme : les variables sont a et b les bornes de l’intervalle,
n le nombre de rectangles, h le pas (la largeur des rectangles),
x l’abscisse courante, s1 et s2 les sommes des aires.

h← (b − a)/n
s1← 0
s2← 0
x ← a
POUR i variant de 0 à n − 1

s1← s1 +f (x)
x ← x + h
s2← s2 +f (x)

FIN POUR
s1← h * s1
s2← h * s2
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Si la fonction f est simplement continue sur [a;b], on peut
obtenir une valeur approchée de l’intégrale en approximant
f (x), sur chaque intervalle [a + ih;a + (i + 1)h], par :
f (a + (i + 1/2)h).
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Théorème
Soit f une fonction continue sur [a;b].
Si a ≤ b et si m et M sont deux réels tels que m ≤ f (x) ≤ M
pour tout x ∈ [a;b], alors

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

et si a < b, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Démonstration à l’aide du théorème précédent.
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Définition
On appelle valeur moyenne de la fonction f sur [a;b] le nombre

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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