|CALCUL INTEGRAL |

1 Intégrale d’une fonction continue et positive

1.1 Définition

Soient a et b deux réels quelconques tels que a < b, f une fonction continue et positive sur
[a; b] et C sa courbe représentative dans un repére orthogonal (O; I, J).
L’unité d’aire est Iaire du rectangle de cdtés [O] et [O.J].

On appelle intégrale de f sur [a; b], I’aire, exprimée en unités d’aire, de la surface limitée
par 1’axe des abscisses, la courbe C, et les droites d’équations z = a et x = b.
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L’intégrale de f sur [a; b] se note / f(z)dzx .
a
b
On dit aussi que / f(x)dx représente I’aire sous la courbe entre a et b.
a

1.2 Remarque

b
Dans I’écriture / f(x)dx, x est une lettre " muette ". On peut la remplacer par n’importe qu’elle

a
autre lettre, exceptées a et b :

/abf(a:)dx:/abf(t)dt:/abf(u)du:/abf(z)dz:/abf(a)da:__.

b
/ f(z)dz se lit aussi " somme de a a b de f(z)dz "
a

1.3 Théoreme

Soit f une fonction continue et positive sur [a;b]; la fonction F' définie sur [a;b] par

F(z) = / f(t)dt est dérivable sur [a;b] et F'(z) = f(z) pour tout x de [a; b].

De plus F'(a) = 0.
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Démonstration dans le cas ou f est croissante
xT

z+h
Pour tout x € [a;b]eth > 0, F(x) = / f(t)dt et F(x+h) = / f(t)dt.

a a
Ainsi F(z + h) — F(z) est I'aire de la surface limitée par la courbe C, I’axe des abscisses et les
droites verticales passant par les points d’abscisses x et x + h.
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On a donc hf(z) < F(x + h) — F(z) < hf(x + h), ce qui, dans le cas ol f est croissante,
F(x+h)—-F(z
( ;L (@) < f(x +h).

entraine que f(z) <

Puisque la fonction f est continue, }llir% f(x+ h) = f(x) donc, d’apres le théoreme des gen-
—>

darmes, lim Flz+h) — F(z)
h—0 h
tout z € [a; b].

= f(x) ce qui signifie que F est dérivable en x et F'(z) = f(x) pour

2 Primitives et intégrale

2.1 Définition

Soit f une fonction continue sur un intervalle 1.
On dit qu’une fonction F’ est une primitive de la fonction f sur [ si la fonction F' est dérivable
sur [ et a pour dérivée la fonction f.

" I est une primitive de f sur I " a le méme sens que " f est la fonction dérivée de F'sur [ ".

2.2 Théoréme

’ Toute fonction continue sur un intervalle / admet des primitives sur cet intervalle. ‘

Démonstration dans le cas o I = [a; b].

Si f est positive, on a vu que la fonction F définie par F'(x) = / ’ f(t)dt estune primitive de f
puisque F'(z) = f(z). ‘

Sinon, on admet que f a un mininum m sur [a; b] et on défini une fonction g sur [a; b], par g(z) =
() = m; )

g est continue et positive sur [a; b], donc admet une primitive G définie par G(z) = g(t)dt.

a

Alors la fonction F' définie par F'(z) = G(z) 4+ ma est une primitive de f sur [a; b].
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2.3 Théoréeme

Si la fonction F' est une primitive de la fonction f sur I, alors la fonction G définie sur I par
G(z) = F(z) + c ou ¢ est un nombre réel quelconque, est aussi une primitive de f sur /.

Toutes les primitives de f sur I sont les fonctions G définies sur [ par G(x) = F(x) + c ou c est
un nombre réel quelconque.

2.4 Théoreme

Soit f une fonction continue sur un intervalle I, xo un réel appartenant a I et yo un réel donné
quelconque ; alors il existe une fonction F' unique, primitive de f sur I, telle que F'(xg) = yo.

Démonstration
Si GG est une primitive quelconque, alors toutes les primitives de f sont les fonctions F' définies
sur I par F'(z) = G(z) + ¢; la condition F'(x¢) = yo implique ¢ = yop — G(z¢) et c est unique.

x
En particulier, si I = [a; b] et si F est la fonction définie sur [a; b] par F'(z) = / f(t)dt alors F
a

est I’unique primitive de f qui s’annule en a.

2.5 Détermination des primitives d’une fonction

On cherche dans le tableau des dérivées usuelles en le lisant de droite a gauche et on utilise les
résultats suivants :

e si F est une primitive de f sur [ et si G est une primitive de g sur [ alors F'+ G est une primitive
de f+gsurl.

e si F est une primitive de f sur [ et si k est un nombre réel quelconque alors k' est une primitive
de kf sur I.

2.6 Primitives des fonctions usuelles

Pour chacune des fonctions f suivantes, la fonction F' est une primitive de f sur ’intervalle [
donné :

Fonction f Intervalle 1 Primitive F'
f(z) =a aveca €R I=R F(z) =ax
f(z) =2™ avecn € N* I=R F(z) = L nt
n+1
1 1
f(l’):ﬁ I =] —00;0] ou I =]0:+o0| F(gg):_5
1
f(x)=e¢e" I=R F(x)=e¢"
1
flz)=— I =]0:+o0f F(z)=Inz
x
f(z) = cosx I=R F(z) =sinz
f(x) =sinzx I=R F(x) = —coszx
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Fonctions composées :

et strictement positive sur un intervalle K.

on suppose que % est une fonction dérivable sur un intervalle .J, dérivable

Fonction f Intervalle 1 Primitive F'
1
f(z) =cos(ax +b) aveca #0 I=R F(z) = —sin(azx + b)
a
1
f(z) =sin(az +b) aveca #0 I=R | F(x)=——cos(ax+b)
a
1
— o,/ n * _ _ n+1
f=uxu a:/ecneN I=J F(x)—n+1u
f= ju I=K F(z)=2Vu
f = 1=1J F(z) = "
u/
f=— I=K F(z) =Inu
U

3 Intégrale d’une fonction continue

3.1 Propriété

Soit f une fonction continue et positive sur [a; b] et F' une primitive de f sur [a; b].

Alors I’intégrale de a a b de la fonction f est égale au nombre F'(b) — F'(a).
On note : X
|ty = Fb) - Fla)
a
Démonstration

On sait que f admet des primitives sur [a; ], par exemple la fonction G définie par G(z) =

T

/ F(t)at.

a

/ f(t)dt etG(a) =0 donc on abien G(b

/f

Il reste a démontrer que I’intégrale de f ne dépend pas du choix de la primitive :

si F' une primitive quelconque de f, alors F'(z)

G(b) — G(a).

3.2 Définition

On généralise la notion d’intégrale :

= G(x)+c eton vérifie alors que F'(b)

—F(a) =

primitive de f sur /.

On note :

soit f une fonction continue sur un intervalle I, a et b deux réels quelconques de I et F' une

On appelle intégrale entre a & b de la fonction f le nombre F'(b) —

([ﬂ@w=

(b) — F(a)

F(a).
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3.3 Exemple
1
Pourx > 0, / ;dtzlna:—lnlzlnx
1

3.4 Propriétés

Soit f et g deux fonctions continues sur un intervalle I, a, b et ¢ des éléments de .

/a " Fw)dz = 0

/abf(:v)dx = —/baf(x)d:n

Démonstration immédiate a I’aide de la définition.

— Inversion des bornes

— Relation de Chasles

/abf(x)da: = /acf(x)dx+/cbf(az)d:c

Démonstration immédiate a ’aide de la définition.

— Linéarité
si k est un réel quelconque, alors

b b
/ k:f(x)dm:k:/ f(z)dx
a a
Démonstration presque immédiate a I’aide de la définition.
— Linéarité
b b b
[ @+ gtz = [ fae+ [ gl
a a a

Démonstration presque immédiate a I’aide de la définition.

4 Calcul d’aires

Soit f et g deux fonctions continues sur [a; b].

— L’aire, exprimée en unités d’aire, de la surface délimitée par la courbe C'y, I’axe des abscisses
et les droites d’équations x = aetx = best:

b
A= / f(z)dz si f est positive sur [a; ]

b
A= —/ f(z)dz si f est négative sur [a; b]
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— si f(x) > g(x) sur [a;b], alors Iaire, exprimée en unités d’aire, de la surface délimitée par
les courbes C'y et Cy et les droites d’équations x = a etz = best :

b
A= / (f(2) - gla))de

5 Intégrales et inégalités

5.1 Positivité

sia < betsi f(x) > 0 pour tout z € [a; b] alors

/abf(x)da: >0

b
Démonstration : par définition, / f(z)dz = F(b) — F(a) oi F une primitive de f sur [a; ],

c’est-a-dire F' = f; donc, si f (;) > 0 pour tout x € [a;b], alors F est croissante sur [a;b] ;
donc F(b) > F(a) et F(b) — F(a) > 0.

5.2 Intégration d’une inégalité

Théoreme

Soit f et g deux fonctions continues sur [a; b].
Sia <betsi f(z) < g(z) pour tout x € [a; b], alors

/abf(x)dx < /abg(a:)dq:

Pour la démonstration, considérer la fonction h = g — f.

5.3 Encadrement

Soit f une fonction continue, positive et croissante sur [a; b] et n un entier strictement positif.
b—a

On partage [a; b] en n intervalles d’amplitude h =
n
Sur chaque intervalle [a + ih; a + (i + 1)h], ot i varie de 0 a n — 1, on a I’encadrement
fla+ih) < f(z) < fla+ (i +1)h)
a+(i+1)h
Donc hf(a+ih) < / f(x)dx < hf(a+ (i + 1)h), ot a gauche et a droite, les produits

. a+ih
sont des aires de rectangles.

On obtient alors I’encadrement suivant :

n—1 b n—1
by fla+ih) < / flx)dz <h Y fla+ (i+1)h)
i=0 a i=0

On peut écrire un programme afin d’effectuer ce calcul.
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Algorithme
Les variables sont a et b les bornes de I’intervalle, n le nombre de rectangles, h le pas (la largeur
des rectangles), x I’abscisse courante, sl et s2 les sommes des aires.

h+< (b—a)/n

sl 0

2+ 0

T+ a

POUR ¢ variantde 0 an — 1
sl < sl +f(z)
T+ x+h
$2 <+ 82 +f(x)

FIN POUR

sl < h *sl

s2 < h*s2

Si la fonction f est simplement continue sur [a; b], on peut obtenir une valeur approchée de 1’inté-
grale en approximant f(x), sur chaque intervalle [a + ih;a + (i + 1)h], par : f(a + (i + 1/2)h).

5.4 Valeur moyenne

Théoréeme

Soit f une fonction continue sur [a; b].
Sia < betsim et M sont deux réels tels que m < f(x) < M pour tout z € [a; b], alors

b
m(b— a) S/ f(z)dz < M(b—a)

1 b
etsia < b, mgb/ f(t)dt <M
—al,

Démonstration a I’aide du théoreme précédent.
Définition

On appelle valeur moyenne de la fonction f sur [a; b] le nombre

p=t /abf(x)dw

a
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