
CALCUL INTEGRAL

1 Intégrale d’une fonction continue et positive

1.1 Définition

Soient a et b deux réels quelconques tels que a < b, f une fonction continue et positive sur
[a; b] et C sa courbe représentative dans un repère orthogonal (O; I, J).
L’unité d’aire est l’aire du rectangle de côtés [OI] et [OJ ].

On appelle intégrale de f sur [a; b], l’aire, exprimée en unités d’aire, de la surface limitée
par l’axe des abscisses, la courbe C, et les droites d’équations x = a et x = b.

L’intégrale de f sur [a; b] se note
∫ b

a
f(x)dx .

On dit aussi que
∫ b

a
f(x)dx représente l’aire sous la courbe entre a et b.

1.2 Remarque

Dans l’écriture
∫ b

a
f(x)dx, x est une lettre " muette ". On peut la remplacer par n’importe qu’elle

autre lettre, exceptées a et b :∫ b

a
f(x)dx =

∫ b

a
f(t)dt =

∫ b

a
f(u)du =

∫ b

a
f(z)dz =

∫ b

a
f(α)dα = . . .

∫ b

a
f(x)dx se lit aussi " somme de a à b de f(x)dx ".

1.3 Théorème

Soit f une fonction continue et positive sur [a; b] ; la fonction F définie sur [a; b] par

F (x) =

∫ x

a
f(t)dt est dérivable sur [a; b] et F ′(x) = f(x) pour tout x de [a; b].

De plus F (a) = 0.
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Démonstration dans le cas où f est croissante

Pour tout x ∈ [a; b] et h > 0, F (x) =
∫ x

a
f(t)dt et F (x+ h) =

∫ x+h

a
f(t)dt.

Ainsi F (x + h) − F (x) est l’aire de la surface limitée par la courbe C, l’axe des abscisses et les
droites verticales passant par les points d’abscisses x et x+ h.

On a donc hf(x) ≤ F (x + h) − F (x) ≤ hf(x + h), ce qui, dans le cas où f est croissante,

entraîne que f(x) ≤
F (x+ h)− F (x)

h
≤ f(x+ h).

Puisque la fonction f est continue, lim
h→0

f(x+ h) = f(x) donc, d’après le théorème des gen-

darmes, lim
h→0

F (x+ h)− F (x)
h

= f(x) ce qui signifie que F est dérivable en x et F ′(x) = f(x) pour

tout x ∈ [a; b].

2 Primitives et intégrale

2.1 Définition

Soit f une fonction continue sur un intervalle I .
On dit qu’une fonction F est une primitive de la fonction f sur I si la fonction F est dérivable
sur I et a pour dérivée la fonction f .

" F est une primitive de f sur I " a le même sens que " f est la fonction dérivée de F sur I ".

2.2 Théorème

Toute fonction continue sur un intervalle I admet des primitives sur cet intervalle.

Démonstration dans le cas où I = [a; b].

Si f est positive, on a vu que la fonction F définie par F (x) =
∫ x

a
f(t)dt est une primitive de f

puisque F ′(x) = f(x).

Sinon, on admet que f a un mininum m sur [a; b] et on défini une fonction g sur [a; b], par g(x) =
f(x)−m ;

g est continue et positive sur [a; b], donc admet une primitive G définie par G(x) =
∫ x

a
g(t)dt.

Alors la fonction F définie par F (x) = G(x) +mx est une primitive de f sur [a; b].

Bernelas - Bays - Desclaux 2 Lycée Les Eucalyptus 2019-2020



2.3 Théorème

Si la fonction F est une primitive de la fonction f sur I , alors la fonction G définie sur I par
G(x) = F (x) + c où c est un nombre réel quelconque, est aussi une primitive de f sur I .

Toutes les primitives de f sur I sont les fonctions G définies sur I par G(x) = F (x) + c où c est
un nombre réel quelconque.

2.4 Théorème

Soit f une fonction continue sur un intervalle I , x0 un réel appartenant à I et y0 un réel donné
quelconque ; alors il existe une fonction F unique, primitive de f sur I , telle que F (x0) = y0.

Démonstration
Si G est une primitive quelconque, alors toutes les primitives de f sont les fonctions F définies

sur I par F (x) = G(x) + c ; la condition F (x0) = y0 implique c = y0 −G(x0) et c est unique.

En particulier, si I = [a; b] et si F est la fonction définie sur [a; b] par F (x) =
∫ x

a
f(t)dt alors F

est l’unique primitive de f qui s’annule en a.

2.5 Détermination des primitives d’une fonction

On cherche dans le tableau des dérivées usuelles en le lisant de droite à gauche et on utilise les
résultats suivants :

• si F est une primitive de f sur I et siG est une primitive de g sur I alors F +G est une primitive
de f + g sur I .

• si F est une primitive de f sur I et si k est un nombre réel quelconque alors kF est une primitive
de kf sur I .

2.6 Primitives des fonctions usuelles

Pour chacune des fonctions f suivantes, la fonction F est une primitive de f sur l’intervalle I
donné :

Fonction f Intervalle I Primitive F

f(x) = a avec a ∈ R I = R F (x) = ax

f(x) = xn avec n ∈ N∗ I = R F (x) =
1

n+ 1
xn+1

f(x) =
1

x2
I =]−∞; 0[ ou I =]0 : +∞[ F (x) = −

1

x

f(x) =
1
√
x

I =]0 : +∞[ F (x) = 2
√
x

f(x) = ex I = R F (x) = ex

f(x) =
1

x
I =]0 : +∞[ F (x) = lnx

f(x) = cosx I = R F (x) = sinx

f(x) = sinx I = R F (x) = − cosx
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Fonctions composées : on suppose que u est une fonction dérivable sur un intervalle J , dérivable
et strictement positive sur un intervalle K.

Fonction f Intervalle I Primitive F

f(x) = cos(ax+ b) avec a 6= 0 I = R F (x) =
1

a
sin(ax+ b)

f(x) = sin(ax+ b) avec a 6= 0 I = R F (x) = −
1

a
cos(ax+ b)

f = u′ × un avec n ∈ N∗ I = J F (x) =
1

n+ 1
un+1

f =
u′
√
u

I = K F (x) = 2
√
u

f = u′eu I = J F (x) = eu

f =
u′

u
I = K F (x) = lnu

3 Intégrale d’une fonction continue

3.1 Propriété

Soit f une fonction continue et positive sur [a; b] et F une primitive de f sur [a; b].
Alors l’intégrale de a à b de la fonction f est égale au nombre F (b)− F (a).
On note : ∫ b

a
f(x)dx = F (b)− F (a)

Démonstration
On sait que f admet des primitives sur [a; b], par exemple la fonction G définie par G(x) =∫ x

a
f(t)dt.

G(b) =

∫ b

a
f(t)dt et G(a) = 0 donc on a bien G(b)−G(a) =

∫ b

a
f(t)dt.

Il reste à démontrer que l’intégrale de f ne dépend pas du choix de la primitive :
si F une primitive quelconque de f , alors F (x) = G(x)+c et on vérifie alors que F (b)−F (a) =

G(b)−G(a).

3.2 Définition

On généralise la notion d’intégrale :

soit f une fonction continue sur un intervalle I , a et b deux réels quelconques de I et F une
primitive de f sur I .
On appelle intégrale entre a à b de la fonction f le nombre F (b)− F (a).
On note : ∫ b

a
f(x)dx = F (b)− F (a)
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3.3 Exemple

Pourx > 0,

∫ x

1

1

t
dt = lnx− ln 1 = lnx

3.4 Propriétés

Soit f et g deux fonctions continues sur un intervalle I , a, b et c des éléments de I .

— ∫ a

a
f(x)dx = 0

— Inversion des bornes ∫ b

a
f(x)dx = −

∫ a

b
f(x)dx

Démonstration immédiate à l’aide de la définition.

— Relation de Chasles ∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx

Démonstration immédiate à l’aide de la définition.

— Linéarité
si k est un réel quelconque, alors∫ b

a
kf(x)dx = k

∫ b

a
f(x)dx

Démonstration presque immédiate à l’aide de la définition.

— Linéarité ∫ b

a
(f(x) + g(x))dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx

Démonstration presque immédiate à l’aide de la définition.

4 Calcul d’aires

Soit f et g deux fonctions continues sur [a; b].

— L’aire, exprimée en unités d’aire, de la surface délimitée par la courbe Cf , l’axe des abscisses
et les droites d’équations x = a et x = b est :

A =

∫ b

a
f(x)dx si f est positive sur [a; b]

A = −
∫ b

a
f(x)dx si f est négative sur [a; b]
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— si f(x) ≥ g(x) sur [a; b], alors l’aire, exprimée en unités d’aire, de la surface délimitée par
les courbes Cf et Cg et les droites d’équations x = a et x = b est :

A =

∫ b

a
(f(x)− g(x))dx

5 Intégrales et inégalités

5.1 Positivité

si a ≤ b et si f(x) ≥ 0 pour tout x ∈ [a; b] alors∫ b

a
f(x)dx ≥ 0

Démonstration : par définition,
∫ b

a
f(x)dx = F (b)− F (a) où F une primitive de f sur [a; b],

c’est-à-dire F ′ = f ; donc, si f(x) ≥ 0 pour tout x ∈ [a; b], alors F est croissante sur [a; b] ;
donc F (b) ≥ F (a) et F (b)− F (a) ≥ 0.

5.2 Intégration d’une inégalité

Théorème

Soit f et g deux fonctions continues sur [a; b].
Si a ≤ b et si f(x) ≤ g(x) pour tout x ∈ [a; b], alors∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx

Pour la démonstration, considérer la fonction h = g − f .

5.3 Encadrement

Soit f une fonction continue, positive et croissante sur [a; b] et n un entier strictement positif.

On partage [a; b] en n intervalles d’amplitude h =
b− a
n

.

Sur chaque intervalle [a+ ih; a+ (i+ 1)h], où i varie de 0 à n− 1, on a l’encadrement

f(a+ ih) ≤ f(x) ≤ f(a+ (i+ 1)h)

Donc hf(a+ ih) ≤
∫ a+(i+1)h

a+ih
f(x)dx ≤ hf(a+ (i+ 1)h), où à gauche et à droite, les produits

sont des aires de rectangles.

On obtient alors l’encadrement suivant :

h

n−1∑
i=0

f(a+ ih) ≤
∫ b

a
f(x)dx ≤ h

n−1∑
i=0

f(a+ (i+ 1)h)

On peut écrire un programme afin d’effectuer ce calcul.
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Algorithme
Les variables sont a et b les bornes de l’intervalle, n le nombre de rectangles, h le pas (la largeur

des rectangles), x l’abscisse courante, s1 et s2 les sommes des aires.

h← (b− a)/n
s1← 0
s2← 0
x← a
POUR i variant de 0 à n− 1

s1← s1 +f(x)
x← x+ h
s2← s2 +f(x)

FIN POUR
s1← h * s1
s2← h * s2

Si la fonction f est simplement continue sur [a; b], on peut obtenir une valeur approchée de l’inté-
grale en approximant f(x), sur chaque intervalle [a+ ih; a+ (i+ 1)h], par : f(a+ (i+ 1/2)h).

5.4 Valeur moyenne

Théorème

Soit f une fonction continue sur [a; b].
Si a ≤ b et si m et M sont deux réels tels que m ≤ f(x) ≤M pour tout x ∈ [a; b], alors

m(b− a) ≤
∫ b

a
f(x)dx ≤M(b− a)

et si a < b, m ≤ 1

b− a

∫ b

a
f(t)dt ≤M

Démonstration à l’aide du théorème précédent.
Définition

On appelle valeur moyenne de la fonction f sur [a; b] le nombre

µ =
1

b− a

∫ b

a
f(x)dx
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