| Fonctions de référence 1

1 Les fonctions sinus et cosinus

1.1 Définitions

Le plan étant muni d’un repére orthonormé (O; I, .J), on peut associer a tout réel x un unique
point M sur le cercle trigonométrique. (voir cours de seconde)
La fonction cosinus est la fonction qui a tout réel x associe 1’abscisse de M. On note :

cos:x € R— cosx
La fonction sinus est la fonction qui a tout réel x associe I’ordonnée de M. On note :
sin:z € R——sinx

Ainsi, les fonctions cosinus et sinus sont définies sur R.

1.2 Dérivées

1.2.1 Théoreme admis

Les fonctions sinus et cosinus sont continues et dérivables sur R.
Pour tout réel z :

(sinz)’ = cosx et (cosz) = —sinz

1.2.2 Calcul de dérivées

Soit a et b deux réels :
e lafonction f définie sur R par f(z) = sin(ax + b) est dérivable sur R et pour tout réel x :

f(x) = acos(ax +b)

e lafonction f définie sur R par f(z) = cos(az + b) est dérivable sur R et pour tout réel z :

f'(z) = —asin(ax + b)

Démonstration :

On sait que si f(z) = g(az + b), alors f'(x) = ag’(ax + b) (voir le cours sur les dérivées).
11 suffit d’appliquer cette formule en prenant pour g la fonction sinus ou la fonction cosinus.

1.3 Propriétés
1.3.1 Périodicité

Pour tout réel x :

sin(xz + 27) = sinx et cos(z + 2m) = cosx

On dit que les fonctions sinus et cosinus sont périodiques de période 2.
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Application : il suffit de connaitre les valeurs prises par les fonctions sinus et cosinus sur un inter-
valle d’amplitude 27 pour déterminer les valeurs de ces fonctions pour tout réel x. En particulier, pour
le tracé des courbes représentatives, il suffit de tracer les courbes sur I'intervalle [—; 7| par exemple
puis de compléter par des translations successives de vecteur 277 et —2i. (i étant le vecteur unitaire
en abscisse).

1.3.2 Parité

Pour tout réel x :

sin(—z) = —sinz et cos(—x) = cosx

On dit que la fonction sinus est impaire et que la fonction cosinus est paire.

Conséquence : dans un repere orthogonal, la courbe représentative de la fonction sinus est symé-
trique par rapport a I’origine du repeére et la courbe représentative de la fonction cosinus est symétrique
par rapport a I’axe des ordonnées.

Application : pour le tracé des courbes représentatives dans un repere orthogonal, on peut se
restreindre a 1’intervalle [0; 7], puis compléter sur I'intervalle [—7; 7] a 1’aide des symétries précisées
ci-dessus et enfin utiliser les translations comme précédemment.

1.3.3 Limite

sin x

Propriété : lim =1

z—0 T

Démonstration
La limite du quotient n’est pas immédiate puisqu’on obtient une forme indéterminée. On leve
I’indétermination en utilisant la définition du nombre dérivé :

sin(0 + ) —sin0

T

est le taux d’accroissement de la fonction sinus en 0.

Sa limite quand x tend vers O est le nombre dérivé de la fonction sinus en 0 qui est cos 0 = 1.

Done lim sinz lim sin(0 + ) — sin0 1
z—=0 T z—0 x

1.4 Variations et représentations graphiques

Grace aux propriétés de périodicité et de parité énoncées plus haut, on peut limiter 1’étude des
variations a intervalle [0; 7r].
Le signe des fonctions dérivées s’obtient avec le cercle trigonométrique.

Fonction cosinus Fonction sinus
X 0 s X 0 g s
fl(x) = —sinz | 0 - 0 f'(z) = cos(x) + 0 —
1 1
F(@) = cosa \ F(@) = sin(z) / \
-1 0 0
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FIGURE 1 — Courbe représentative de la fonction cosinus

FIGURE 2 — Courbe représentative de la fonction sinus
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2 La fonction exponentielle

2.1 Théoreme et définition

Théoreme

Il existe une unique fonction f dérivable sur R telle que : f' = fet f(0) = 1.

Définition
Cette fonction est appelée fonction exponentielle. On note :

exp : ¢ € R — exp(x)
Ainsi pour tout x réel : exp’(x) = exp(z) et exp(0) = 1.
La fonction exponentielle est définie et continue sur R puisqu’elle est dérivable sur R.

Propriété

Pour tout réel z, exp(z) # 0.

Démonstration : soit ¢ la fonction définie pour tout = réel par ¢(x) = exp(z) exp(—x).

La fonction ¢ est dérivable sur R comme produit de fonctions dérivables et

¢'(x) = (exp(x))’ exp(—a) + exp(z)(exp(—z))’ = exp(z) exp(—a) — exp(z) exp(—) = 0
Si ¢ a une dérivée nulle sur R alors ¢ est une fonction constante.

Or ¢(0) = exp(0) exp(0) = 1; on en déduit que, pour tout z réel, p(z) = 1,

soit exp(x) exp(—z) = 1, d’ol on conclut que exp(z) # 0.

Démonstration du théoreme
L’existence d’une telle fonction est admise.

On démontre I’unicité : soit g une fonction dérivable sur R telle que : ¢ = g et g(0) = 1.

On peut définir pour tout x réel une fonction u par u(z) = egl(;a) car exp(x) # 0 pour tout x.
X
, g(@)exp(x) — g(z)exp’(x)  g(x) exp(x) — g(x) exp(x)
Alors (u(z)) = 5 = 5 =0
(exp()) (exp(z))

La fonction u de dérivée nulle est donc constante sur R et puisque «(0) = 1, on en déduit que
u(x) = 1 pour tout x réel. Ceci signifie que g(x) = exp(x) pour tout x réel.

Propriété :

la fonction exponentielle est strictement positive : pour tout z réel, exp(x) > 0.

Démonstration : la fonction exponentielle est continue sur R et exp(0) = 1; s’il existe un réel
x tel que exp(z) < 0 alors d’apres le théoreme des valeurs intermédiaires, il existe a réel tel que
exp(a) = 0. Or ceci est impossible puisque pour tout réel z, exp(x) # 0.

2.2 Relation fonctionnelle

Théoreme

Quels que soient les réels a et b :

exp(a + b) = exp(a) exp(b)

Démonstration :
exp(z + a)

Soit a un réel quelconque. On pose, pour tout x réel, g(x) = @)
exp(x
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g est définie et dérivable sur R avec
exp/(z + a) exp(z) — exp(z + a) exp/(z)

/
g\r)=
o ({2
_exp(x +a)exp(z) — exp(z + a) exp(z)
(exp(x))?
donc ¢'(x) = 0 pour tout z réel. La fonction g de dérivée nulle est donc constante sur R,
9(r) = 9(0) = “2) _ xpa) pour tout el
= = = r .
soitg(x) =g exp(0) exp(a) pour tout x rée
exp(a+b
En particulier pour « = b, on obtient g(b) = explath) = exp(a)
exp(b)

d’ou on déduit que exp(a + b) = exp(a) exp(b).

Remarque

Soit x un réel quelconque. A 1’aide de la relation fonctionnelle, on peut écrire :
X

2
exp(z) = exp(§ + §) = exp(5) exp(§)) = (exp(§)) "
Puisqu’un carré est positif et que exp(z) # 0, on montre a nouveau que exp(z) > 0 pour tout x.

2.2.1 Propriétés

Quels que soient les réels a, b et I’entier relatif n :

‘Zﬁig)} eXP(—b)Zex;(b) exp(na) = (expa)”

exp(a —b) =

Démonstration
On utilise la relation fonctionnelle :
e exp(a) =exp((a—0b)+b) =exp(a —b)exp(b)
exp(a)
exp(b)
exp(0) 1

e 1’égalité précédente avec a = 0 donne exp(—b) = o) = 0
exp exp

et puisque exp(b) # 0, on en déduit : exp(a — b) =

e Soit P, la propriété " exp(na) = (expa)™";
nous allons d’abord démontrer par récurrence que P, est vraie pour tout n € N.

Initialisation : exp(0 x a) = exp(0) = 1 et (expa)® = 1 donc P est vraie.

Hérédité : supposons que la propriété est vraie pour un certain entier naturel % ;

soit exp(ka) = (exp a)F.

Alors exp((k + 1)a) = exp(ka + a) = exp(ka) exp(a) = (expa)* exp(a) d’apres I’hypothese
de récurrence,

donc exp((k + 1)a) = (exp(a))**! et Py, est vraie.

Conclusion : P, est vraie pour tout n € N.

1
Maintenant, si n est un entier relatif négatif, exp(na) = ———
exp(—na)
or (—n) € N ; on peut donc écrire exp((—n)a) = (exp(a))™"
1
On en déduit que : exp(na) = —— = (expa)™.
) = Gap(ay (P

2.2.2 Notations

On note e I’image de 1 par la fonction exponentielle : exp(1) = e.
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e~ 2,718... et n’est pas un nombre rationnel ; c’est un nombre qui a des propriétés commune a
celle de .

On peut alors écrire pour tout n € Z, exp(n) = exp(n x 1) = (exp(1))" = e".

Cette écriture se prolonge a R :

Pour tout € R, I'image de z par la fonction exponentielle se note :

exp(z) = e”

On peut donc écrire : e? = 1 et (e)' = e”.

Utilisation : on peut écrire la relation fonctionnelle et les propriétés de la fonction exponentielle
avec la nouvelle notation ; on reconnait alors les propriétés bien connues du calcul avec des exposants :

Quels que soient les réels a, b et ’entier relatif n :

De plus, quels que soient les réels a, b : e = (e%)°

(NI
I
B

2
Par exemple : (e2> =¢” donce2 = +/e” eten particulier, e

2.3 Variations et limites

Théoreme

La fonction exponentielle est strictement croissante sur R.

Par définition, exp’(z) = exp(z) et exp(xz) > 0 pour tout = réel; puisque sa dérivée est stricte-
ment positive sur R, on conclut que exp est strictement croissante sur R.

Corollaire :

b

a<bee*<eb et a=b<=e"=¢

En particulier : siz < O alorse” < 1 etsix > 0 alorse” > 1.

Théoreme

lim €e* =400 et lim e* =0
T—>+00 Tr—>—00

Démonstration
On considere la fonction f définie sur [0; +oo[ par f(z) = e* — .
f'(x) =e” — 1 etd’apres le corollaire précédent, f'(x) > 0. La fonction f est donc croissante et
de plus f(0) = 1.
On en déduit que, pour tout z € [0; +oc[, f(z) >0 d’ou :e” > z.
lim x = 400 donc, par comparaison, lim e* = +oc.

r—>+00 r—>+00

. z . 1 . 1 . s . ‘s

lim e*= lim — = lim — =0 (parinverse en utilisant le résultat précédent).
T—>—00 r—r—oo e~ ¥ X—+o00 €
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Tableau de variation et représentation graphique

On construit le tableau de variation a I’aide des résultats précédents.

La courbe passe par les points de coordonnées (0; 1) et (1;e).

La tangente 2 la courbe au point d’abscisse 0 a pour coefficient directeur e = 1.

Puisque lim e® = 0, la courbe représentative de la fonction exponentielle admet en —oo une
r—r—00

asymptote d’équation y = 0, soit ’axe des abscisses.

f(@) = expa "

f(@) = expa /

2.4 Compléments
2.4.1 Calcul de limites

Théoreme

T

lim — =4 et lim ze* =0
r—r+0o0 I T——00

Démonstration

On considere la fonction g définie sur [0; 4-o00[ par g(z) = e — &
¢'(z) = e® — x et d’aprés la démonstration précédente, ¢'(x) > 0.
La fonction g est donc croissante et de plus g(0) = 1.

2

xT

e’
On en déduit que, pour tout = € [0; +-00[, g(z) > 0, soite” > %2 d’ot: — > 5
x

x . : v
lim — = +o0 donc, par comparaison, lim — = +4o0.
z—>+00 2 T—+00 I
lim ze® = lim —— = lim —— =0 (parinverse en utilisant le résultat précédent.)
T—>—00 z——o00 e~ % X—4oco €
Théoréme
et -1
lim =1
z—0 X
Démonstration
e(]+z _ 60

est le taux d’accroissement de la fonction exp en 0.
x
Sa limite quand x tend vers O est le nombre dérivé de la fonction exponentielle en 0 qui est
exp0 = 1.

T _1q eO—f—z_eO

Donc lim =lim — =1.
z—0 i xz—0 xT
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2.4.2 Calcul de dérivées

Nous savons que si f est une fonction dérivable sur R, (f(ax + b)) = a x f'(ax + b).

En appliquant ce résultat a la fonction exponentielle, (avec a = —k et b = 0), on obtient :

(exp(—kz)) = —kexp(—kx)

Plus généralement, on montre que :

si u est une fonction dérivable sur un intervalle I de R, alors la fonction e est dérivable sur
Tet

(eU)/ — uleu
Remarque

e étant strictement positif, le signe de (e*) est le méme que celui de v’

!
1

Nous avons vu dans le chapitre précédent que : (\/u) = et (u™) = nu'u""

u
2y/u
On constate que ces dérivées satisfont toutes a la formule générale :

(f (u(x))) = ' (x) x f'(u(=))

Exemple : (exp(—kz?)) = —2kz exp(—kx?)
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