
Fonctions de référence 1

1 Les fonctions sinus et cosinus

1.1 Définitions

Le plan étant muni d’un repère orthonormé (O; I, J), on peut associer à tout réel x un unique
point M sur le cercle trigonométrique. (voir cours de seconde)

La fonction cosinus est la fonction qui à tout réel x associe l’abscisse de M . On note :

cos : x ∈ R 7−→ cosx

La fonction sinus est la fonction qui à tout réel x associe l’ordonnée de M . On note :

sin : x ∈ R 7−→ sinx

Ainsi, les fonctions cosinus et sinus sont définies sur R.

1.2 Dérivées

1.2.1 Théorème admis

Les fonctions sinus et cosinus sont continues et dérivables sur R.
Pour tout réel x :

(sinx)′ = cosx et (cosx)′ = − sinx

1.2.2 Calcul de dérivées

Soit a et b deux réels :
• la fonction f définie sur R par f(x) = sin(ax+ b) est dérivable sur R et pour tout réel x :

f ′(x) = a cos(ax+ b)

• la fonction f définie sur R par f(x) = cos(ax+ b) est dérivable sur R et pour tout réel x :

f ′(x) = −a sin(ax+ b)

Démonstration :

On sait que si f(x) = g(ax+ b), alors f ′(x) = ag′(ax+ b) (voir le cours sur les dérivées).
Il suffit d’appliquer cette formule en prenant pour g la fonction sinus ou la fonction cosinus.

1.3 Propriétés

1.3.1 Périodicité

Pour tout réel x :

sin(x+ 2π) = sinx et cos(x+ 2π) = cosx

On dit que les fonctions sinus et cosinus sont périodiques de période 2π.
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Application : il suffit de connaître les valeurs prises par les fonctions sinus et cosinus sur un inter-
valle d’amplitude 2π pour déterminer les valeurs de ces fonctions pour tout réel x. En particulier, pour
le tracé des courbes représentatives, il suffit de tracer les courbes sur l’intervalle [−π;π] par exemple
puis de compléter par des translations successives de vecteur 2π~i et −2π~i. (~i étant le vecteur unitaire
en abscisse).

1.3.2 Parité

Pour tout réel x :

sin(−x) = − sinx et cos(−x) = cosx

On dit que la fonction sinus est impaire et que la fonction cosinus est paire.

Conséquence : dans un repère orthogonal, la courbe représentative de la fonction sinus est symé-
trique par rapport à l’origine du repère et la courbe représentative de la fonction cosinus est symétrique
par rapport à l’axe des ordonnées.

Application : pour le tracé des courbes représentatives dans un repère orthogonal, on peut se
restreindre à l’intervalle [0;π], puis compléter sur l’intervalle [−π;π] à l’aide des symétries précisées
ci-dessus et enfin utiliser les translations comme précédemment.

1.3.3 Limite

Propriété : lim
x→0

sinx

x
= 1

Démonstration
La limite du quotient n’est pas immédiate puisqu’on obtient une forme indéterminée. On lève

l’indétermination en utilisant la définition du nombre dérivé :

sin(0 + x)− sin 0

x
est le taux d’accroissement de la fonction sinus en 0.

Sa limite quand x tend vers 0 est le nombre dérivé de la fonction sinus en 0 qui est cos 0 = 1.

Donc lim
x→0

sinx

x
= lim

x→0

sin(0 + x)− sin 0

x
= 1.

1.4 Variations et représentations graphiques

Grâce aux propriétés de périodicité et de parité énoncées plus haut, on peut limiter l’étude des
variations à l’intervalle [0;π].

Le signe des fonctions dérivées s’obtient avec le cercle trigonométrique.
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FIGURE 1 – Courbe représentative de la fonction cosinus

FIGURE 2 – Courbe représentative de la fonction sinus
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2 La fonction exponentielle

2.1 Théorème et définition

Théorème

Il existe une unique fonction f dérivable sur R telle que : f ′ = f et f(0) = 1.

Définition
Cette fonction est appelée fonction exponentielle. On note :

exp : x ∈ R 7−→ exp(x)

Ainsi pour tout x réel : exp′(x) = exp(x) et exp(0) = 1.

La fonction exponentielle est définie et continue sur R puisqu’elle est dérivable sur R.

Propriété
Pour tout réel x, exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions dérivables et
φ′(x) = (exp(x))′ exp(−x) + exp(x)(exp(−x))′ = exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction constante.
Or φ(0) = exp(0) exp(0) = 1 ; on en déduit que, pour tout x réel, φ(x) = 1,
soit exp(x) exp(−x) = 1, d’où on conclut que exp(x) 6= 0.

Démonstration du théorème
L’existence d’une telle fonction est admise.

On démontre l’unicité : soit g une fonction dérivable sur R telle que : g′ = g et g(0) = 1.

On peut définir pour tout x réel une fonction u par u(x) =
g(x)

exp(x)
car exp(x) 6= 0 pour tout x.

Alors (u(x))′ =
g′(x) exp(x)− g(x) exp′(x)

(exp(x))2
=
g(x) exp(x)− g(x) exp(x)

(exp(x))2
= 0

La fonction u de dérivée nulle est donc constante sur R et puisque u(0) = 1, on en déduit que
u(x) = 1 pour tout x réel. Ceci signifie que g(x) = exp(x) pour tout x réel.

Propriété :
la fonction exponentielle est strictement positive : pour tout x réel, exp(x) > 0.
Démonstration : la fonction exponentielle est continue sur R et exp(0) = 1 ; s’il existe un réel

x tel que exp(x) < 0 alors d’après le théorème des valeurs intermédiaires, il existe a réel tel que
exp(a) = 0. Or ceci est impossible puisque pour tout réel x, exp(x) 6= 0.

2.2 Relation fonctionnelle

Théorème

Quels que soient les réels a et b :

exp(a+ b) = exp(a) exp(b)

Démonstration :

Soit a un réel quelconque. On pose, pour tout x réel, g(x) =
exp(x+ a)

exp(x)
;
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g est définie et dérivable sur R avec

g′(x) =
exp′(x+ a) exp(x)− exp(x+ a) exp′(x)

(exp(x))2

=
exp(x+ a) exp(x)− exp(x+ a) exp(x)

(exp(x))2

donc g′(x) = 0 pour tout x réel. La fonction g de dérivée nulle est donc constante sur R,

soit g(x) = g(0) =
exp(a)

exp(0)
= exp(a) pour tout x réel.

En particulier pour x = b, on obtient g(b) =
exp(a+ b)

exp(b)
= exp(a)

d’où on déduit que exp(a+ b) = exp(a) exp(b).

Remarque
Soit x un réel quelconque. A l’aide de la relation fonctionnelle, on peut écrire :
exp(x) = exp(x2 + x

2 ) = exp(x2 ) exp(
x
2 )) =

(
exp(x2 )

)2.
Puisqu’un carré est positif et que exp(x) 6= 0, on montre à nouveau que exp(x) > 0 pour tout x.

2.2.1 Propriétés

Quels que soient les réels a, b et l’entier relatif n :

exp(a− b) = exp(a)

exp(b)
exp(−b) = 1

exp(b)
exp(na) = (exp a)n

Démonstration
On utilise la relation fonctionnelle :
• exp(a) = exp((a− b) + b) = exp(a− b) exp(b)

et puisque exp(b) 6= 0, on en déduit : exp(a− b) =
exp(a)

exp(b)

• l’égalité précédente avec a = 0 donne exp(−b) =
exp(0)

exp(b)
=

1

exp(b)

• Soit Pn la propriété " exp(na) = (exp a)n " ;
nous allons d’abord démontrer par récurrence que Pn est vraie pour tout n ∈ N.

Initialisation : exp(0× a) = exp(0) = 1 et (exp a)0 = 1 donc P0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain entier naturel k ;
soit exp(ka) = (exp a)k.
Alors exp((k + 1)a) = exp(ka + a) = exp(ka) exp(a) = (exp a)k exp(a) d’après l’hypothèse

de récurrence,
donc exp((k + 1)a) = (exp(a))k+1 et Pk+1 est vraie.

Conclusion : Pn est vraie pour tout n ∈ N.

Maintenant, si n est un entier relatif négatif, exp(na) =
1

exp(−na)
or (−n) ∈ N ; on peut donc écrire exp((−n)a) = (exp(a))−n

On en déduit que : exp(na) =
1

(exp(a))−n
= (exp a)n.

2.2.2 Notations

On note e l’image de 1 par la fonction exponentielle : exp(1) = e.
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e ' 2, 718 . . . et n’est pas un nombre rationnel ; c’est un nombre qui a des propriétés commune à
celle de π.

On peut alors écrire pour tout n ∈ Z, exp(n) = exp(n× 1) = (exp(1))n = en.
Cette écriture se prolonge à R :

Pour tout x ∈ R, l’image de x par la fonction exponentielle se note :

exp(x) = ex

On peut donc écrire : e0 = 1 et (ex)′ = ex.

Utilisation : on peut écrire la relation fonctionnelle et les propriétés de la fonction exponentielle
avec la nouvelle notation ; on reconnaît alors les propriétés bien connues du calcul avec des exposants :

Quels que soient les réels a, b et l’entier relatif n :

ea+b = eaeb ea−b =
ea

eb
e−b =

1

eb
ena = (ea)n

De plus, quels que soient les réels a, b : eab = (ea)b

Par exemple :
(

e
x
2

)2
= ex donc e

x
2 =
√

ex et en particulier, e
1
2 =
√

e.

2.3 Variations et limites

Théorème

La fonction exponentielle est strictement croissante sur R.

Par définition, exp′(x) = exp(x) et exp(x) > 0 pour tout x réel ; puisque sa dérivée est stricte-
ment positive sur R, on conclut que exp est strictement croissante sur R.

Corollaire :

a < b⇐⇒ ea < eb et a = b⇐⇒ ea = eb

En particulier : si x < 0 alors ex < 1 et si x > 0 alors ex > 1.

Théorème

lim
x−→+∞

ex = +∞ et lim
x−→−∞

ex = 0

Démonstration
On considère la fonction f définie sur [0; +∞[ par f(x) = ex − x.
f ′(x) = ex − 1 et d’après le corollaire précédent, f ′(x) ≥ 0. La fonction f est donc croissante et

de plus f(0) = 1.
On en déduit que, pour tout x ∈ [0; +∞[, f(x) > 0 d’où : ex > x.
lim

x−→+∞
x = +∞ donc, par comparaison, lim

x−→+∞
ex = +∞.

lim
x−→−∞

ex = lim
x−→−∞

1

e−x
= lim

X−→+∞

1

eX
= 0 (par inverse en utilisant le résultat précédent).
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Tableau de variation et représentation graphique
On construit le tableau de variation à l’aide des résultats précédents.
La courbe passe par les points de coordonnées (0; 1) et (1; e).
La tangente à la courbe au point d’abscisse 0 a pour coefficient directeur e0 = 1.
Puisque lim

x−→−∞
ex = 0, la courbe représentative de la fonction exponentielle admet en −∞ une

asymptote d’équation y = 0, soit l’axe des abscisses.

x

f ′(x) = expx

f(x) = expx

−∞ +∞

+

00

+∞+∞

2.4 Compléments

2.4.1 Calcul de limites

Théorème

lim
x−→+∞

ex

x
= +∞ et lim

x−→−∞
xex = 0

Démonstration
On considère la fonction g définie sur [0; +∞[ par g(x) = ex − x2

2 .
g′(x) = ex − x et d’après la démonstration précédente, g′(x) > 0.
La fonction g est donc croissante et de plus g(0) = 1.

On en déduit que, pour tout x ∈ [0; +∞[, g(x) > 0, soit ex > x2

2 d’où :
ex

x
>
x

2
.

lim
x−→+∞

x

2
= +∞ donc, par comparaison, lim

x−→+∞

ex

x
= +∞.

lim
x−→−∞

xex = lim
x−→−∞

x

e−x
= lim

X−→+∞
− X

eX
= 0 (par inverse en utilisant le résultat précédent.)

Théorème

lim
x−→0

ex − 1

x
= 1

Démonstration

e0+x − e0

x
est le taux d’accroissement de la fonction exp en 0.

Sa limite quand x tend vers 0 est le nombre dérivé de la fonction exponentielle en 0 qui est
exp 0 = 1.

Donc lim
x→0

ex − 1

x
= lim

x→0

e0+x − e0

x
= 1.
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2.4.2 Calcul de dérivées

Nous savons que si f est une fonction dérivable sur R, (f(ax+ b))′ = a× f ′(ax+ b).

En appliquant ce résultat à la fonction exponentielle, (avec a = −k et b = 0), on obtient :

(exp(−kx))′ = −k exp(−kx)

Plus généralement, on montre que :

si u est une fonction dérivable sur un intervalle I de R, alors la fonction eu est dérivable sur
I et

(eu)′ = u′eu

Remarque
eu étant strictement positif, le signe de (eu)′ est le même que celui de u′.

Nous avons vu dans le chapitre précédent que : (
√
u)
′
=

u′

2
√
u

et (un)′ = nu′un−1

On constate que ces dérivées satisfont toutes à la formule générale :

(f(u(x)))′ = u′(x)× f ′(u(x))

Exemple : (exp(−kx2))′ = −2kx exp(−kx2)
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