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La fonction exponentielle est continue et strictement croissante
sur R. Le corollaire du théorème des valeurs intermédiaires
permet d’affirmer que quel que soit le réel a strictement positif,
il existe un réel unique x tel que ex = a.

Définition
Si a est un réel strictement positif, la solution unique sur R de
l’équation ex = a, d’inconnue x , s’appelle . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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La fonction exponentielle est continue et strictement croissante
sur R. Le corollaire du théorème des valeurs intermédiaires
permet d’affirmer que quel que soit le réel a strictement positif,
il existe un réel unique x tel que ex = a.

Définition
Si a est un réel strictement positif, la solution unique sur R de
l’équation ex = a, d’inconnue x , s’appelle logarithme népérien
de a, et on note x = lna.
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Définition
La fonction logarithme népérien est définie sur ]0; +∞[ par :
. . . . . . . . .

Autrement dit, pour tout x strictement positif,

. . . . . . . . . . . . . . . . . . . . .

On dit que la fonction ln est la . . . . . . . . . . . . . . . . . . . . . de la
fonction exp.

Ainsi : ln1 = 0 puisque e0 = 1 et lne = 1 puisque e1 = e.

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Définition
Définition
Propriété

Définition
La fonction logarithme népérien est définie sur ]0; +∞[ par :
x 7−→ ln x .

Autrement dit, pour tout x strictement positif,

. . . . . . . . . . . . . . . . . . . . .

On dit que la fonction ln est la . . . . . . . . . . . . . . . . . . . . . de la
fonction exp.

Ainsi : ln1 = 0 puisque e0 = 1 et lne = 1 puisque e1 = e.

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Définition
Définition
Propriété

Définition
La fonction logarithme népérien est définie sur ]0; +∞[ par :
x 7−→ ln x .
Autrement dit, pour tout x strictement positif,

. . . . . . . . . . . . . . . . . . . . .

On dit que la fonction ln est la . . . . . . . . . . . . . . . . . . . . . de la
fonction exp.

Ainsi : ln1 = 0 puisque e0 = 1 et lne = 1 puisque e1 = e.

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Définition
Définition
Propriété

Définition
La fonction logarithme népérien est définie sur ]0; +∞[ par :
x 7−→ ln x .
Autrement dit, pour tout x strictement positif,

y = ln x ⇐⇒ ey = x

On dit que la fonction ln est la . . . . . . . . . . . . . . . . . . . . . de la
fonction exp.

Ainsi : ln1 = 0 puisque e0 = 1 et lne = 1 puisque e1 = e.

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Définition
Définition
Propriété

Définition
La fonction logarithme népérien est définie sur ]0; +∞[ par :
x 7−→ ln x .
Autrement dit, pour tout x strictement positif,

y = ln x ⇐⇒ ey = x

On dit que la fonction ln est la . . . . . . . . . . . . . . . . . . . . . de la
fonction exp.

Ainsi : ln1 = 0 puisque e0 = 1 et lne = 1 puisque e1 = e.

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Définition
Définition
Propriété

Définition
La fonction logarithme népérien est définie sur ]0; +∞[ par :
x 7−→ ln x .
Autrement dit, pour tout x strictement positif,

y = ln x ⇐⇒ ey = x

On dit que la fonction ln est la fonction réciproque de la
fonction exp.

Ainsi : ln1 = 0 puisque e0 = 1 et lne = 1 puisque e1 = e.

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Définition
Définition
Propriété

Définition
La fonction logarithme népérien est définie sur ]0; +∞[ par :
x 7−→ ln x .
Autrement dit, pour tout x strictement positif,

y = ln x ⇐⇒ ey = x

On dit que la fonction ln est la fonction réciproque de la
fonction exp.

Ainsi : ln1 = 0 puisque e0 = 1 et lne = 1 puisque e1 = e.

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Définition
Définition
Propriété

De plus : si ln x = y alors x = ey et
1
x
= e−y soit ln

(
1
x

)
= −y .

On obtient donc, pour tout réel x strictement positif :

. . . . . . . . . . . .
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De plus : si ln x = y alors x = ey et
1
x
= e−y soit ln

(
1
x

)
= −y .

On obtient donc, pour tout réel x strictement positif :

ln
1
x
= − ln x
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Propriété

Pour tout réel x , ln(ex) = x

et pour tout réel x strictement positif, eln x = x
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Propriété
La fonction logarithme népérien est . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .

Démonstration partielle
On admet que la fonction ln est continue et dérivable sur
]0; +∞[.
Si on pose f (x) = exp(ln x) = x ,
alors f ′(x) =. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Or f ′(x) = 1, d’où ln′(x) =. . .
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La fonction logarithme népérien est . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

ln′(x) =
1
x

et
1
x
> 0 pour tout x > 0 ; puisque sa dérivée est

strictement positive sur ]0; +∞[, on conclut que la fonction ln
est strictement croissante sur ]0; +∞[.
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Corollaire
Pour tout réels a et b strictement positifs,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

En particulier : 0 < x < 1 équivaut à ln x < 0 et x > 1 équivaut
à ln x > 0.
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Théorème

lim
x−→+∞

ln x = . . . . . .

et lim
x−→0
x>0

ln x = . . . . . .

Démonstration
On utilise la définition d’une limite infinie à l’infini : . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ensuite : lim

x−→0
x>0

ln x = lim
x−→0
x>0

− ln
1
x

;

or, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Donc, par composition, on obtient . . . . . . . . . . . . . . . . . .
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x−→0
x>0

− ln
1
x

;

or, lim
x−→0
x>0

1
x
= +∞ et lim

X−→+∞
− lnX = −∞

Donc, par composition, on obtient . . . . . . . . . . . . . . . . . .
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Théorème

lim
x−→+∞

ln x = +∞ et lim
x−→0
x>0

ln x = −∞

Démonstration
On utilise la définition d’une limite infinie à l’infini : quel que soit
le réel A, si x > eA alors ln x > A ; donc l’intervalle ]A; +∞[
contient toutes les valeurs de ln x pour x assez grand.

Ensuite : lim
x−→0
x>0

ln x = lim
x−→0
x>0

− ln
1
x

;

or, lim
x−→0
x>0

1
x
= +∞ et lim

X−→+∞
− lnX = −∞

Donc, par composition, on obtient lim
x−→0
x>0

ln x = −∞.
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Propriété
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Théorème
Tableau de variation et représentation graphique

On construit le tableau de variation à l’aide des résultats
précédents. Puisque la fonction ln est la réciproque de la
fonction exp, les courbes représentatives de ces deux fonctions
sont symétriques par rapport à la droite d’équation y = x .

La courbe passe par les points de coordonnées (1;0) et (e;1).

La tangente à la courbe au point d’abscisse 1 a pour coefficient
directeur ln′(1) = 1.

Puisque lim
x−→0
x>0

ln x = −∞, la courbe représentative de la fonction

logarithme népérien admet une asymptote d’équation x = 0,
soit l’axe des ordonnées.
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Fonction logarithme népérien

x 0 +∞
f ′(x) = 1

x

f (x) = ln x

+

−∞

+∞
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FIGURE – Courbe représentative de la fonction ln
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FIGURE – Courbe représentative de la fonction ln
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La fonction ln est la réciproque de la fonction exp. On peut donc
déduire une relation fonctionnelle pour la fonction ln à partir de
celle existant pour la fonction exp :
pour tout réels x et y , exp(x) exp(y) = exp(x + y)
donc ln(exp(x) exp(y)) = ln(exp(x + y)) = x + y ;
si on pose a = exp(x) et b = exp(y) , soit x = lna et y = lnb on
obtient :

Théorème
Quels que soient les réels a et b strictement positifs :

. . . . . . . . . . . . . . . . . . . . . . . .
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La fonction ln est la réciproque de la fonction exp. On peut donc
déduire une relation fonctionnelle pour la fonction ln à partir de
celle existant pour la fonction exp :
pour tout réels x et y , exp(x) exp(y) = exp(x + y)
donc ln(exp(x) exp(y)) = ln(exp(x + y)) = x + y ;
si on pose a = exp(x) et b = exp(y) , soit x = lna et y = lnb on
obtient :

Théorème
Quels que soient les réels a et b strictement positifs :

ln(a× b) = lna + lnb

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Théorème
Propriétés

Remarque
Si a = b, la relation fonctionnelle nous donne : ln(a2) = 2 lna.

On peut alors en déduire : ln x = ln((
√

x)2) = 2 ln(
√

x) ,

soit ln(
√

x) = 1
2 ln x .
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Propriétés
Quels que soient les réels a, b strictement positifs et l’entier
relatif n :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
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Propriétés
Quels que soient les réels a, b strictement positifs et l’entier
relatif n :

ln
(a

b

)
= lna− lnb ln

(
1
b

)
= − lnb

ln(an) = n lna
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Démonstration
• La deuxième propriété a déjà été prouvée.

• pour la première propriété, on utilise la relation
fonctionnelle :

ln
a
b
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Démonstration
• La deuxième propriété a déjà été prouvée.

• pour la première propriété, on utilise la relation
fonctionnelle :

ln
a
b
= ln

(
a×

1
b

)
= lna + ln

1
b
= lna− lnb.
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Démonstration
pour la troisième propriété notée Pn : " ln(an) = n lna " ;

nous allons d’abord démontrer par récurrence que Pn est vraie
pour tout n ∈ N.

Initialisation : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit . . . . . . . . . . . .
Alors, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conclusion : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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pour tout n ∈ N.

Initialisation : ln(a0) = ln 1 = 0 et 0 lna = 0 donc P0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit ln(ak ) = k lna.

Alors, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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pour tout n ∈ N.

Initialisation : ln(a0) = ln 1 = 0 et 0 lna = 0 donc P0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit ln(ak ) = k lna.
Alors, ln(ak+1) = ln(ak × a) = ln(ak ) + ln a = k lna + lna
d’après l’hypothèse de récurrence,
donc ln(ak+1) = (k + 1) lna et Pk+1 est vraie.

Conclusion : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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nous allons d’abord démontrer par récurrence que Pn est vraie
pour tout n ∈ N.

Initialisation : ln(a0) = ln 1 = 0 et 0 lna = 0 donc P0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit ln(ak ) = k lna.
Alors, ln(ak+1) = ln(ak × a) = ln(ak ) + ln a = k lna + lna
d’après l’hypothèse de récurrence,
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Démonstration
pour la troisième propriété notée Pn : " ln(an) = n lna " ;

nous allons d’abord démontrer par récurrence que Pn est vraie
pour tout n ∈ N.

Initialisation : ln(a0) = ln 1 = 0 et 0 lna = 0 donc P0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit ln(ak ) = k lna.
Alors, ln(ak+1) = ln(ak × a) = ln(ak ) + ln a = k lna + lna
d’après l’hypothèse de récurrence,
donc ln(ak+1) = (k + 1) lna et Pk+1 est vraie.

Conclusion : Pn est vraie pour tout n ∈ N.
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Démonstration
Maintenant, si n est un entier relatif négatif,

ln(an) = ln
1

a−n = − ln(a−n)

or (−n) ∈ N ; on peut donc écrire ln(a−n) = (−n) lna

On en déduit que : ln(an) = n lna.
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a−n = − ln(a−n)

or (−n) ∈ N ; on peut donc écrire ln(a−n) = (−n) lna

On en déduit que : ln(an) = n lna.
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Théorème

lim
x−→+∞

ln x
x

= . . .

et lim
x−→0

ln(1 + x)
x

= . . .
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Théorème

lim
x−→+∞

ln x
x

= 0 et lim
x−→0

ln(1 + x)
x

= 1
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Démonstration
• On sait que pour tout a réel, a < exp(a) , donc pour tout a
strictement positif, lna ≤ a. (Croissance de la fonction ln).

On en déduit que pour tout x strictement positif ln
√

x ≤
√

x
d’où 1

2 ln x ≤
√

x et donc ln x ≤ 2
√

x .

Alors, pour tout x ≥ 1 : 0 ≤
ln x
x
≤

2
√

x
x

,

c’est-à-dire : 0 ≤
ln x
x
≤

2
√

x
.

De plus lim
x→+∞

2√
x
= 0 , donc par application du théorème des

gendarmes, lim
x→+∞

ln x
x

= 0.
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x

= 0.

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Calcul de limites
Calcul de dérivées

Remarque

On pouvait aussi écrire
ln x
x

=
X

exp(X )
=

1
exp(X)

X

,

et appliquer les théorèmes sur la composition et l’inverse de
limites.
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Démonstration

•
ln(1 + x)

x
=

ln(1 + x)− ln1
x

est

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sa limite quand x tend vers 0 est le . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Donc lim
x→0

ln(1 + x)
x

= lim
x→0

ln(1 + x)− ln1
x

= . . .
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•
ln(1 + x)

x
=

ln(1 + x)− ln1
x

est

le taux d’accroissement de la fonction ln en 1.

Sa limite quand x tend vers 0 est le nombre dérivé de la
fonction ln en 1 qui est 1.

Donc lim
x→0

ln(1 + x)
x

= lim
x→0

ln(1 + x)− ln1
x
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On montre que :

Propriété
si u est une fonction dérivable et strictement positive sur un
intervalle I de R, alors la fonction composée ln ◦u, notée aussi
lnu, est dérivable sur I et

(ln ◦u)′(x) = . . . . . .

Par exemple, on obtient pour tout x > −b
a :

(ln(ax + b))′ = . . . . . .
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intervalle I de R, alors la fonction composée ln ◦u, notée aussi
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a :

(ln(ax + b))′ = . . . . . .

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Calcul de limites
Calcul de dérivées

On montre que :

Propriété
si u est une fonction dérivable et strictement positive sur un
intervalle I de R, alors la fonction composée ln ◦u, notée aussi
lnu, est dérivable sur I et

(ln ◦u)′(x) = u′(x)
u(x)

Par exemple, on obtient pour tout x > −b
a :

(ln(ax + b))′ = . . . . . .

V. B. J. D. S. B. Diaporama du cours



Définition et propriétés
Variations et limites

Relation fonctionnelle
Compléments

Calcul de limites
Calcul de dérivées

On montre que :

Propriété
si u est une fonction dérivable et strictement positive sur un
intervalle I de R, alors la fonction composée ln ◦u, notée aussi
lnu, est dérivable sur I et

(ln ◦u)′(x) = u′(x)
u(x)

Par exemple, on obtient pour tout x > −b
a :

(ln(ax + b))′ =
a

ax + b
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Remarque
u étant strictement positive, le signe de (lnu)′ est le même que
celui de u′.

Cette dérivée satisfait à la formule générale :

(f (u(x))′ = u′(x)× f ′(u(x))
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