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Définition et propriétés

Définition
Définition
Propriété

La fonction exponentielle est continue et strictement croissante
sur R. Le corollaire du théoréme des valeurs intermédiaires
permet d’affirmer que quel que soit le réel a strictement positif,
il existe un réel unique x tel que e* = a.

Définition

Si a est un réel strictement positif, la solution unique sur R de
'équation e* = a, d'inconnue x, s'appelle ..................
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Définition et propriétés

Définition
Définition
Propriété

La fonction exponentielle est continue et strictement croissante
sur R. Le corollaire du théoréme des valeurs intermédiaires
permet d’affirmer que quel que soit le réel a strictement positif,
il existe un réel unique x tel que e* = a.

Définition

Si a est un réel strictement positif, la solution unique sur R de
'équation e* = a, d’inconnue x, s’appelle logarithme népérien
de a, et on note x = In a.
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Définition et propriétés Définition

Définition
Propriété

La fonction logarithme népérien est définie sur |0; +oo[ par :
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Définition et propriétés Définition

Définition
Propriété

Définition

La fonction logarithme népérien est définie sur |0; +oo[ par :
X — In X.
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Définition et propriétés Définition
Définition
Propriété

Définition
La fonction logarithme népérien est définie sur |0; +oo[ par :

X — In X.
Autrement dit, pour tout x strictement positif,
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Définition et propriétés Définition
Définition
Propriété

Définition
La fonction logarithme népérien est définie sur |0; +oo[ par :

X — In X.
Autrement dit, pour tout x strictement positif,

y=Ihx<e =x
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Définition et propriétés Définition

Définition
Propriété

Définition

La fonction logarithme népérien est définie sur |0; +oo[ par :
X — In X.

Autrement dit, pour tout x strictement positif,

y=Ihx<<e =x

On dit que lafonctionInestla..................... de la
fonction exp.
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Définition et propriétés Définition

Définition
Propriété

Définition

La fonction logarithme népérien est définie sur |0; +oo[ par :
X — In X.

Autrement dit, pour tout x strictement positif,

y=Ihx<<e =x

On dit que la fonction In est la fonction réciproque de la
fonction exp.
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Définition et propriétés Définition

Définition
Propriété

Définition

La fonction logarithme népérien est définie sur |0; +oo[ par :
X — In X.

Autrement dit, pour tout x strictement positif,

y=Ihx<<e =x

On dit que la fonction In est la fonction réciproque de la
fonction exp.

Ainsi :In1 =0 puisque e® =1 etlne = 1 puisque e' = e.
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Définition et propriétés Définition

Définition

Propriété

1 1
De plus:silnx = y alors x =Y et;:e—y soit In =7
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Définition et propriétés Définition

Définition

Propriété

1 1
De plus:silnx = y alors x =Y et;:e—y soit In =7

On obtient donc, pour tout réel x strictement positif :
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Définition et propriétés Définition

Définition

Propriété

1
De plus :silnx = y alors x = ¢ et;:e*y soitin{ = | =—y.

On obtient donc, pour tout réel x strictement positif :

1
In—=—Inx
X
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Définition et propriétés Définition

Définition
Propriété

Propriété
Pour tout réel x, In(e*) = x

et pour tout réel x strictement positif, "X = x
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Propriété
Variations et limites Théoréme
Théoréme
Tableau de variation et représentation graphique

Propriété

Diapor



Propriété
Variations et limites Théoréme
Théoréme
Tableau de variation et représentation graphique

Propriété
La fonction logarithme népérien est continue et dérivable sur

]0; +oc[ et In’(x) = )1(
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Propriété
Variations et limites Théoréme
Théoréme
Tableau de variation et représentation graphique

Propriété
La fonction logarithme népérien est continue et dérivable sur

]0; +oc[ et In’(x) = )1(

Démonstration partielle
On admet que la fonction In est continue et dérivable sur
10; +-o0].

A
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Propriété
Variations et limites Théoréme
Théoréme
Tableau de variation et représentation graphique

Propriété
La fonction logarithme népérien est continue et dérivable sur

]0; +oc[ et In’(x) = )1(

Démonstration partielle

On admet que la fonction In est continue et dérivable sur
10; +-o0].

Si on pose f(x) = exp(In x) = x,

alors f/(X) =...ooii

A
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Propriété
Variations et limites Théoréme
Théoréme
Tableau de variation et représentation graphique

Propriété
La fonction logarithme népérien est continue et dérivable sur

]0; +oc[ et In’(x) = )1(

Démonstration partielle

On admet que la fonction In est continue et dérivable sur
10; +-o0].

Si on pose f(x) = exp(In x) = x,

alors f'(x) =In’(x) x exp(In x) = In’(x) x Xx.

A
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Propriété
Variations et limites Théoréme
Théoréme
Tableau de variation et représentation graphique

Propriété
La fonction logarithme népérien est continue et dérivable sur

]0; +oc[ et In’(x) = )1(

|

Démonstration partielle

On admet que la fonction In est continue et dérivable sur
10; +-o0].

Si on pose f(x) = exp(In x)
alors f'(x) =In’(x) x exp(In x
Or f'(x) =1,dol In’(x) =

_)()x.

A
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Propriété
Variations et limites Théoréme
Théoréme

Tableau de variation et représentation graphique

Propriété
La fonction logarithme népérien est continue et dérivable sur

]0; +oo[ et In’(x) = )1(

Démonstration partielle

On admet que la fonction In est continue et dérivable sur
10; +o0l.

Si on pose f(x) = exp(In x) = x,

alors f'(x) =In’(x) x exp(In x) = In’(x) x X.

1
Or /() = 1, d'ol In'(x) =—
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Propriété
Variations et limites Théoréeme
Théoréme
Tableau de variation et représentation graphique

Théoreme




Propriété
Variations et limites Théoréeme
Théoréme
Tableau de variation et représentation graphique

Théoreme
La fonction logarithme népérien est strictement croissante sur

10; +o0.
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Propriété
Variations et limites Théoréeme
Théoréme
Tableau de variation et représentation graphique

Théoreme

La fonction logarithme népérien est strictement croissante sur
10; +-o0l.

1 1
In’(x) = ” et —> 0 pourtout x > 0; puisque sa dérivée est
strictement positive sur ]0; +oo[, on conclut que la fonction In
est strictement croissante sur |0; +oo].
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Propriété
Variations et limites Théoréeme
Théoréme
Tableau de variation et représentation graphique

Corollaire
Pour tout réels a et b strictement positifs,
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Propriété
Variations et limites Théoréeme
Théoréme
Tableau de variation et représentation graphique

Corollaire
Pour tout réels a et b strictement positifs,

a<b<=lna<lInb et a=b<+<=Ina=Inb

V.B.J.D.S.B. Diaporama du cours



Propriété
Variations et limites Théoréeme
Théoréme
Tableau de variation et représentation graphique

Corollaire
Pour tout réels a et b strictement positifs,

a<b<=lna<lInb et a=b<=Ina=Inb

En particulier : 0 < x < 1 équivauta Inx < 0 et x > 1 équivaut
alnx > 0.
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Propriété
Variations et limites Théoréme
Théoréeme
Tableau de variation et représentation graphique

Théoreme




Propriété
Variations et limites Théoréme
Théoréeme
Tableau de variation et représentation graphique

Théoreme

[im Inx=+co
X——+00




Variations et limites

Théoreme

Propriété

Théoréme

Théoréeme

Tableau de variation et représentation graphique

[im Inx=+co
X——+00




Propriété
Variations et limites Théoréme
Théoréeme
Tableau de variation et représentation graphique

Théoreme

lim Inx =+ et lim Inx = —oc0

X—400 x—0
x>0




Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Théoreme

lim Inx =+ et lim InXx = —oc0
X—400 X—0
x>0
Démonstration
On utilise la définition d’'une limite infinie a l'infini : ............
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Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Théoreme

lim Inx =+ et lim Inx = —oc0
X—+00 x—0
x>0

Démonstration

On utilise la définition d’une limite infinie a l'infini : quel que soit
le réel A, si x > e/ alors Inx > A; donc lintervalle |A; +o0]
contient toutes les valeurs de In x pour x assez grand.
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Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Théoreme

lim Inx =+ et lim Inx = —oc0
X—+00 x—0
x>0

Démonstration

On utilise la définition d’une limite infinie a l'infini : quel que soit
le réel A, si x > e/ alors Inx > A; donc l'intervalle | A; +oo]
contient toutes les valeurs de In x pour x assez grand.

. : . 1
Ensuite : lim Inx = lim —In— ;
x—0 x—0 X

x>0 x>0
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Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Théoreme

lim Inx =400 et limInx = —c0
X—+00 X—0
x>0

Démonstration

On utilise la définition d’'une limite infinie a l'infini : quel que soit
le réel A, si x > e/ alors Inx > A; donc lintervalle | A; +oo]
contient toutes les valeurs de In x pour x assez grand.

Ensuite : lim Inx = lim —In— ;

x—0 x—0 X
x>0 x>0
1 .
o, im —=+4+c et Im —InhX=-x
x—0 X X—+oc0

x>0
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Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Théoreme

lim Inx =400 et limInx = —c0
X—+00 X—0
x>0

Démonstration

On utilise la définition d’'une limite infinie a l'infini : quel que soit
le réel A, si x > e/ alors Inx > A; donc lintervalle | A; +oo]
contient toutes les valeurs de In x pour x assez grand.

Ensuite : lim Inx = lim —In— ;

x—0 x—0 X
x>0 x>0
.1 :
o, im —=+4+c et Im —InX=-x
x—0 X X—+o00

x>0
Donc, par composition, on obtient ..................
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Propriété
Variations et limites Théoréme
Théoréeme

Tableau de variation et représentation graphique

Théoréme
lim Inx =+ et lim Inx = —oc0
X—>+00 x—0
x>0

Démonstration

On utilise la définition d’une limite infinie a l'infini : quel que soit
le réel A, si x > e/ alors Inx > A; donc lintervalle |A; +oo]
contient toutes les valeurs de In x pour x assez grand.

. . . 1
Ensuite : lim Inx = lim —In; ;

x—0 x—0
x>0 x>0
1 .
o, Im —=+4+oco0 et Im —InX=-0
x—0 X X—+o0
x>0
Donc, par composition, on obtient lim In x = —occ.

x—0
()
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Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

On construit le tableau de variation a I'aide des résultats
précédents. Puisque la fonction In est la réciproque de la
fonction exp, les courbes représentatives de ces deux fonctions
sont symétriques par rapport a la droite d’équation y = x.

La courbe passe par les points de coordonnées (1;0) et (e; 1).

La tangente a la courbe au point d’abscisse 1 a pour coefficient
directeur In’(1) = 1.

Puisque lim Inx = —o0o, la courbe représentative de la fonction

x—0

x>0
logarithme népérien admet une asymptote d’équation x = 0,

soit 'axe des ordonnées.
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Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Fonction logarithme népérien

F'(x)

x|=

f(x)=1Inx




Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Fonction logarithme népérien

F'(x)

x|=

f(x)=1Inx




Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Fonction logarithme népérien

F'(x)

x|=

f(x)=1Inx




Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Fonction logarithme népérien

F'(x)

x|=

f(x)=1Inx




Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Fonction logarithme népérien

F'(x)

x|=

400
f(x)=1Inx




Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

Fonction logarithme népérien

x|=

F'(x)

f(x)=1Inx /
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Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

FIGURE — Courbe représentative de la fonction In

Diapor



Propriété
Variations et limites Théoréme

Théoréeme
Tableau de variation et représentation graphique

y=1In{x




Théoréeme

Relation fonctionnelle Propriétés

La fonction In est la réciproque de la fonction exp. On peut donc
déduire une relation fonctionnelle pour la fonction In a partir de

celle existant pour la fonction exp :

pour tout réels x et y, exp(x) exp(y) = exp(x + y)

donc In(exp(x) exp(y)) = In(exp(x + ¥)) = x + y¥;

sion pose a = exp(x) et b=exp(y), soitx =Inaety =Inb on
obtient :

Théoreme
Quels que soient les réels a et b strictement positifs :
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Théoréeme

Relation fonctionnelle Propriétés

La fonction In est la réciproque de la fonction exp. On peut donc
déduire une relation fonctionnelle pour la fonction In a partir de

celle existant pour la fonction exp :

pour tout réels x et y, exp(x) exp(y) = exp(x + y)

donc In(exp(x) exp(y)) = In(exp(x + ¥)) = x + y¥;

sion pose a = exp(x) et b=exp(y), soitx =Inaety =Inb on
obtient :

Théoreme
Quels que soient les réels a et b strictement positifs :

In(ax b)=Ina+Inb
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Théoréeme

Relation fonctionnelle Propriétés

Remarque
Si a = b, la relation fonctionnelle nous donne : In(a?) = 21In a.

On peut alors en déduire : In x = In((v/x)?) = 2In(v/X),

soit In(v/x) = % In x.
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Théoréme
Relation fonctionnelle Propriétés

Quels que soient les réels a, b strictement positifs et I'entier
relatif n :
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Théoréme
Relation fonctionnelle Propriétés

Propriétés
Quels que soient les réels a, b strictement positifs et I'entier

relatif n :

In<g):|na—lnb In(;)_—lnb

In(a") =nina
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

e La deuxiéme propriété a déja été prouvée.
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

e La deuxiéme propriété a déja été prouvée.

e pour la premiére propriété, on utilise la relation
fonctionnelle :
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

e La deuxiéme propriété a déja été prouvée.

e pour la premiére propriété, on utilise la relation
fonctionnelle :

a_ D) o nadin —iha—inb
E—n aXB —na+n5_n no.

In
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

pour la troisiéme propriété notée P, : " In(a") = nina";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

pour la troisiéme propriété notée P, : " In(a") = nina";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation & ...t
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

pour la troisiéme propriété notée P, : " In(a") = nina";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : In(a°) =In1 =0 et 0lna= 0 donc P, est vraie.
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

pour la troisiéme propriété notée P, : " In(a") = nina";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : In(a°) =In1 =0 et 0Ilna= 0 donc P, est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k;soit............
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

pour la troisiéme propriété notée P, : " In(a") = nina";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : In(a°) =In1 =0 et 0Ilna= 0 donc P, est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit In(a*) = kIn a.
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

pour la troisiéme propriété notée P, : " In(a") = nina";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : In(a°) =In1 =0 et 0Ilna= 0 donc P, est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit In(a*) = kIn a.
AlOrS, o
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

pour la troisiéme propriété notée P, : " In(a") = nina";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : In(a°) =In1 =0 et 0Ilna= 0 donc P, est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit In(a*) = kIn a.

Alors, In(a"*") = In(a&" x @) = In(&") + Ina=kIna+1Ina
d’aprés I'’hypothése de récurrence,

donc In(&+") = (k + 1) Ina et Py est vraie.
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

pour la troisiéme propriété notée P, : " In(a") = nina";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : In(a°) =In1 =0 et 0Ilna= 0 donc P, est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit In(a*) = kIn a.

Alors, In(a"*") = In(a&" x @) = In(&") + Ina=kIna+1Ina
d’aprés I'’hypothéese de récurrence,

donc In(&+') = (k + 1) Ina et Py, est vraie.

Conclusion & ...
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Théoréme
Relation fonctionnelle Propriétés

Démonstration

pour la troisieme propriété notée P, : " In(a8") = nlna";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : In(a’) =In1 =0 et0lna= 0 donc P, est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit In(a&*) = kIn a.

Alors, In(a"*") = In(a&" x @) =In(&") + Ina=kIna+Ina
d’aprés I'’hypothese de récurrence,

donc In(a**1) = (k + 1) Ina et Py, 4 est vraie.

Conclusion : P, est vraie pour tout n € N.
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Théoréme

Relation fonctionnelle Propriétés

Démonstration

Maintenant, si n est un entier relatif négatif,
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Théoréme
Relation fonctionnelle Propriétés

Démonstration
Maintenant, si n est un entier relatif négatif,

1

In(a") = In = In(a=")

or (—n) € N ; on peut donc écrire In(a~") = (—n)Ina
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Théoréme
Relation fonctionnelle Propriétés

Démonstration
Maintenant, si n est un entier relatif négatif,

1

In(a") = In = In(a=")

or (—n) € N ; on peut donc écrire In(a~") = (—n)Ina

On en déduit que : In(a") = nin a.
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Calcul de limites
Calcul de dérivées

Compléments

Théoreme

Diapor
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Démonstration

e On sait que pour tout a réel, a < exp(a) , donc pour tout a
strictement positif, In a < a. (Croissance de la fonction In).
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Démonstration

e On sait que pour tout a réel, a < exp(a) , donc pour tout a
strictement positif, In a < a. (Croissance de la fonction In).

On en déduit que pour tout x strictement positif In /x < /x
d'ou 3 Inx < /x etdonc Inx < 2y/x.
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Démonstration

e On sait que pour tout a réel, a < exp(a) , donc pour tout a
strictement positif, In a < a. (Croissance de la fonction In).

On en déduit que pour tout x strictement positif In /x < /x
d'ou 3 Inx < /x etdonc Inx < 2y/x.

Inx 2vx
% o Y

Alors, pourtout x >1:0< — <
X X

In x 2

c’est-a-dire : 0<7§7

N
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Démonstration

e On sait que pour tout a réel, a < exp(a) , donc pour tout a
strictement positif, In a < a. (Croissance de la fonction In).

On en déduit que pour tout x strictement positif In /x < /x
d'ou 3 Inx < /x etdonc Inx < 2y/x.

Inx 2vx
% o Y

Alors, pourtout x > 1:0 < — =

X
c’est-a-dire : 0 < InX< 2
-a-dire : — < —.
- X T W
De plus ||m T = 0 , donc par application du théoréme des
“+o00
gendarmes, lim In—x =0.
X—+oo X
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Remarque
In x X 1

T exp(X) =)

On pouvait aussi écrire

et appliquer les théorémes sur la composition et I'inverse de
limites.
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Démonstration

In(1 + x In(1+x) —In1
(1% _ h(1+x) -1
X X

le taux d’accroissement de la fonction In en 1.
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Démonstration
In(1 + x In(1 4+ x) —In1
(1+x) _(+x)-In1
X X

le taux d’accroissement de la fonction In en 1.
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Démonstration
In(1 + x In(1 4+ x) —In1
(1+x) _(+x)-In1
X X

le taux d’accroissement de la fonction In en 1.

Sa limite quand x tend vers 0 est le nombre dérivé de la
fonction In en 1 qui est 1.
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Démonstration
In(1 + x In(1 4+ x) —In1
(1+x) _(+x)-In1
X X

le taux d’accroissement de la fonction In en 1.

Sa limite quand x tend vers 0 est le nombre dérivé de la
fonction In en 1 qui est 1.

Soms lli L2 e S E =Tl

x—0 X x—0 X
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Démonstration
In(1 + x In(1 4+ x) —In1
(1+x) _(+x)-In1
X X

le taux d’accroissement de la fonction In en 1.

Sa limite quand x tend vers 0 est le nombre dérivé de la
fonction In en 1 qui est 1.

S lii 29 e S SE2G =100

x—0 X x—0 X

1.
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On montre que :

Propriété

si u est une fonction dérivable et strictement positive sur un
intervalle / de R, alors la fonction composée In ou, notée aussi
In u, est dérivable sur / et
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On montre que :

Propriété

si u est une fonction dérivable et strictement positive sur un
intervalle / de R, alors la fonction composée In ou, notée aussi
In u, est dérivable sur / et

(Inou)'(x) = —=
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On montre que :

Propriété

si u est une fonction dérivable et strictement positive sur un
intervalle / de R, alors la fonction composée In ou, notée aussi
In u, est dérivable sur / et

(Inou)'(x) = —=

Par exemple, on obtient pour tout x > —g ;

(In(ax + b)) =......
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On montre que :

Propriété

si u est une fonction dérivable et strictement positive sur un
intervalle / de R, alors la fonction composée In ou, notée aussi
In u, est dérivable sur / et

(Inou)'(x) = —~

Par exemple, on obtient pour tout x > —g ;

a
ax-+b

(In(ax + b)) =
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Remarque
u étant strictement positive, le signe de (In u)’ est le méme que
celuide u'.
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Remarque
u étant strictement positive, le signe de (In u)’ est le méme que

celui de U'.

Cette dérivée satisfait a la formule générale :

(F(u(x))" = u'(x) x F'(u(x))
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