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Théoreme et définition Théoréme
Définition
Propriété
Propriété

Théoreme
Il existe une unique fonction f dérivable sur R telle que :
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Théoreme et définition Théoréme
Définition
Propriété
Propriété

Théoreme
Il existe une unique fonction f dérivable sur R telle que :

f' =f et f(0) =1
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Définition
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Cette fonction est appelée
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Cette fonction est appelée fonction exponentielle.
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Théoreme et définition Théoréme
Définition
Propriété
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Définition

Cette fonction est appelée fonction exponentielle.

On note :
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Théoréme
Définition
Propriété
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Théoréme et définition

Définition
Cette fonction est appelée fonction exponentielle.

On note :
exp : X € R — exp(x)
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Théoreme et définition Théoréme
Définition
Propriété
Propriété

Définition
Cette fonction est appelée fonction exponentielle.

On note :
exp : X € R — exp(x)

Ainsipourtout xréel :...................
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Théoreme et définition Théoréme
Définition
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Définition
Cette fonction est appelée fonction exponentielle.

On note :
exp : X € R — exp(x)

Ainsi pour tout x réel : exp’(x) = exp(x) et exp(0) = 1.
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Théoreme et définition Théoréme
Définition
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Définition
Cette fonction est appelée fonction exponentielle.

On note :
exp : X € R — exp(x)

Ainsi pour tout x réel : exp’(x) = exp(x) et exp(0) = 1.

La fonction exponentielle est définie et continue sur R
puisqu’elle est dérivable sur R.
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Pour tout réel x, exp(x) # 0.




Théoréme et définition Théoréme
Définition

Propriété
Propriété

Pour tout réel x, exp(x) # 0.
Démonstration : soit ¢ la fonction définie pour tout x réel par

¢(x) = exp(X) exp(—x).
La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—x) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—X) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0

Si ¢ a une dérivée nulle sur R alors ¢ est une fonction
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—X) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0

Si ¢ a une dérivée nulle sur R alors ¢ est une fonction
constante.
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—X) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0

Si ¢ a une dérivée nulle sur R alors ¢ est une fonction
constante.
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—X) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0

Si ¢ a une dérivée nulle sur R alors ¢ est une fonction
constante.

Or (0) = exp(0) exp(0) = 1;
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—X) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0

Si ¢ a une dérivée nulle sur R alors ¢ est une fonction
constante.

Or ¢(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
o(x)=...
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—X) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0

Si ¢ a une dérivée nulle sur R alors ¢ est une fonction
constante.

Or ¢(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
o(x) =1,
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—X) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0

Si ¢ a une dérivée nulle sur R alors ¢ est une fonction
constante.

Or ¢(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
o(x) =1,

soit exp(x) exp(—x) = ...,
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Définition
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—X) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0

Si ¢ a une dérivée nulle sur R alors ¢ est une fonction
constante.

Or ¢(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
o(x) =1,

soit exp(x) exp(—x) =1,
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—X) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0

Si ¢ a une dérivée nulle sur R alors ¢ est une fonction
constante.

Or ¢(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
o(x) =1,

soit exp(x) exp(—x) = 1, d’'ou on conclutque .........
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Pour tout réel x, exp(x) # 0.

Démonstration : soit ¢ la fonction définie pour tout x réel par
$(x) = exp(x) exp(—X).

La fonction ¢ est dérivable sur R comme produit de fonctions
dérivables et

¢/(x) =(exp(x)) exp(—X) + exp(x)(exp(~ X)) =

exp(x) exp(—x) — exp(x) exp(—x) =0

Si ¢ a une dérivée nulle sur R alors ¢ est une fonction
constante.

Or ¢(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
o(x) =1,

soit exp(x) exp(—x) = 1, d’'ou on conclut que exp(x) # 0.

V.B.J.D.S.B. Diaporama du cours



Théoréme et définition Théoréme

Définition
Propriété
Propriété

Diapor



Théoréme et définition Théoréme
Définition

Propriété
Propriété

Démonstration du théoréme

Lexistence d’'une telle fonction est admise.
On démontre l'unicité :
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Démonstration du théoréme

Lexistence d’une telle fonction est admise.
On démontre l'unicité : soit g une fonction dérivable sur R telle

que:g =g etg(0) =1.

On peut définir pour tout x réel une fonction u par
_ 9(x)

u(x) = xp(X) car exp(x) # 0 pour tout x.
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Démonstration du théoréme

Lexistence d’une telle fonction est admise.

On démontre l'unicité : soit g une fonction dérivable sur R telle
que:g =g etg(0) =1.

On peut définir pour tout x réel une fonction u par

9(x)
exp(Xx
AlOrs (U(X)) =

u(x) = car exp(x) # 0 pour tout x.
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Démonstration du théoréme

Lexistence d’une telle fonction est admise.

On démontre l'unicité : soit g une fonction dérivable sur R telle
que:g =g etg(0)=1.

On peut définir pour tout x réel une fonction u par

_ 9
"~ oot Ca(r )exp((X))i?POl(Jr)tout ;(.) (x)-g(x) exp(x)
g (x)exp(x)—g(x)exp’(x) _ g(x)exp(x)—g(x)exp(x) __
Alors (UX)) =="ostr — 0 (eotor 0
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Démonstration du théoréme

Lexistence d’une telle fonction est admise.
On démontre l'unicité : soit g une fonction dérivable sur R telle

que:g =g etg(0)=1.
On peut définir pour tout x réel une fonction u par

u(x) = 9(x) car exp(x) # 0 pour tout x.
i (x) exp(x)—g(x) exp’(X) (x) exp(x)—g(x) exp(x)
g (x)exp(x)—g(x) exp’(x) __ g(x)exp(x)—g(x)exp(x) __
Alersl(ubg) s P =5 e 0

La fonction u de dérivée nulle est donc constante sur R et
puisque u(0) = 1, on en déduit que u(x) = 1 pour tout x réel.
Ceci signifie que g(x) = exp(x) pour tout x réel.
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La fonction exponentielle est strictement positive : pour tout x
réel, exp(x) > 0.
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La fonction exponentielle est strictement positive : pour tout x
réel, exp(x) > 0.

Démonstration : la fonction exponentielle est continue sur R et
exp(0) = 1; s'il existe un réel x tel que exp(x) < 0 alors d’apres
le théoréme des valeurs intermédiaires, ............
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Théoréme et définition Théoréme
Définition

Propriété
Propriété

La fonction exponentielle est strictement positive : pour tout x
réel, exp(x) > 0.

Démonstration : la fonction exponentielle est continue sur R et
exp(0) = 1; s'il existe un réel x tel que exp(x) < 0 alors d’aprés
le théoréme des valeurs intermédiaires, il existe a réel tel que
exp(a) = 0. Or ceci est impossible puisque pour tout réel x,

exp(x) # 0.
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Relation fonctionnelle

Théoréeme
Quels que soient les réels aet b :
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Théoréeme
Propriétés
Notations

Relation fonctionnelle

Théoréeme
Quels que soient les réels aet b :

exp(a + b) = exp(a) exp(b)
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Théoréeme
Propriétés
Notations

Relation fonctionnelle

Démonstration

Soit a un réel quelconque. On pose, pour tout x réel,

_ exp(x+a) .
g(X) — exp(x) )
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Théoréeme
Propriétés
Notations

Relation fonctionnelle

Démonstration

Soit a un réel quelconque. On pose, pour tout x réel,

_ exp(x+a) .
9() =gt >
g est définie et dérivable sur R avec
g/(X) _ exp’(x+a) exp(x) —exp(x+a) exp’ (X)

(exp(x))?
_ exp(Xx+a) exp(x)—exp(x+a) exp(x)
(exp(x))?
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Théoréeme
Propriétés
Notations

Relation fonctionnelle

Démonstration

Soit a un réel quelconque. On pose, pour tout x réel,

_ exp(x+a) .
9(x) = o)
g est définie et dérivable sur R avec
g/(X) _ exp’(x+a) exp(x) —exp(x+a) exp’ (X)

(exp(x))?
__ exp(x+a) exp(x)—exp(x+a) exp(x)
(exp(x))? ] _ L

donc g'(x) = 0 pour tout x réel. La fonction g de dérivée nulle
est donc constante sur R,

soit g(x) = g(0) = :E((g))

= exp(a) pour tout x réel.
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Démonstration
Soit a un réel quelconque. On pose, pour tout x réel,

_ exp(x+a) .
9(x) = o)

g est définie et dérivable sur R avec

g/(X) _ exp’(x+a) exp(x) —exp(x+a) exp’ (X)

(exp(x))?
_ exp(Xx+a) exp(x)—exp(x+a) exp(x)
(exp(x))? . _

donc g'(x) = 0 pour tout x réel. La fonction g de dérivée nulle

est donc constante sur R,

soit g(x) = g(0) = z:s((g)) = exp(a) pour tout x réel.

En particulier pour x = b, on obtient
exp(a+ b)
g(b) = ———=—

exp(b)
d’ou on déduit que exp(a + b) = exp(a) exp(b).
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Théoréeme
Propriétés
Notations

Relation fonctionnelle

Remarque
Soit x un réel quelconque. A l'aide de la relation fonctionnelle,
on peut écrire :

exp(x) = exp(5 + §) = exp(¥) exp(%)) = (exp(%))?.

Puisqu’un carré est positif et que exp(x) # 0, on montre a
nouveau que exp(x) > 0 pour tout x.
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Quels que soient les réels a, b et I'entier relatif n :
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Théoréme
Propriétés

Relation fonctionnelle

Notations

Propriétés

Quels que soient les réels a, b et I'entier relatif n :

exp(a) 1

exp(@a—b) = oxp(D) exp(—b) = oxp(D)

exp(na) = (exp a)”
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Théoréme
Propriétés
Notations

Relation fonctionnelle

Démonstration
On utilise la relation fonctionnelle :

o exp(a) =exp((@a— b) + b) = exp(a— b)exp(b)
exp(a)
exp(b)

et puisque exp(b) # 0, on en déduit : exp(a — b) =

e ['égalité précédente avec a = 0 donne
exp(0) 1

>P(=b) = Soib) = exp(b)
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Théoréme
Propriétés
Notations

Relation fonctionnelle

Démonstration

e Soit P, la propriété " exp(na) = (expa)" ";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.
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Théoréme
Propriétés
Notations

Relation fonctionnelle

Démonstration

e Soit P, la propriété " exp(na) = (expa)" ";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : exp(0 x @) = exp(0) = 1 et (expa)® = 1 donc P,
est vraie.
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Théoréme
Propriétés
Notations

Relation fonctionnelle

Démonstration

e Soit P, la propriété " exp(na) = (expa)" ";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : exp(0 x @) = exp(0) = 1 et (expa)® = 1 donc P,
est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit exp(ka) = (exp a)*.
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Théoréme
Propriétés
Notations

Relation fonctionnelle

Démonstration

e Soit P, la propriété " exp(na) = (expa)" ";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : exp(0 x @) = exp(0) = 1 et (expa)® = 1 donc P,
est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit exp(ka) = (exp a). Alors,

exp((k + 1)a) = exp(ka + a) = exp(ka) exp(a) = (exp a)* exp(a)
d’aprées I'’hypothése de récurrence,
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Théoréme
Propriétés
Notations

Relation fonctionnelle

Démonstration

e Soit P, la propriété " exp(na) = (expa)" ";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : exp(0 x @) = exp(0) = 1 et (expa)® = 1 donc P,
est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit exp(ka) = (exp a). Alors,

exp((k + 1)a) = exp(ka + a) = exp(ka) exp(a) = (exp a)* exp(a)
d’aprées I'’hypothése de récurrence,

donc exp((k 4+ 1)a) = (exp(a)) ! et Pk, est vraie.
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Théoréme
Propriétés
Notations

Relation fonctionnelle

Démonstration

e Soit P, la propriété " exp(na) = (expa)" ";
nous allons d’abord démontrer par récurrence que P, est vraie
pour tout n € N.

Initialisation : exp(0 x @) = exp(0) = 1 et (expa)® = 1 donc P,
est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit exp(ka) = (exp a). Alors,

exp((k + 1)a) = exp(ka + a) = exp(ka) exp(a) = (exp a)* exp(a)
d’aprées I'’hypothése de récurrence,

donc exp((k 4+ 1)a) = (exp(a)) ! et Pk, est vraie.

Conclusion : P, est vraie pour tout n € N.

V.B.J.D.S.B. Diaporama du cours




Théoréme
Propriétés
Notations

Relation fonctionnelle

Démonstration

Maintenant, si n est un entier relatif négatif,
exp(na)=.........
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Relation fonctionnelle

Notations

Démonstration

Maintenant, si n est un entier relatif négatif,

exp(na) = =
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Propriétés

Relation fonctionnelle

Notations

Démonstration
Maintenant, si n est un entier relatif négatif,

exp(na) = =

or (—n) € N ; on peut donc écrire exp((—n)a) =.........
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Relation fonctionnelle

Notations

Démonstration
Maintenant, si n est un entier relatif négatif,

exp(na) = =

or (—n) € N ; on peut donc écrire exp((—n)a) = (exp(a))™"
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Propriétés
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Relation fonctionnelle

Démonstration
Maintenant, si n est un entier relatif négatif,

exp(na) = =

or (—n) € N ; on peut donc écrire exp((—n)a) = (exp(a))~"

Onendéduitque :exp(na) =..................
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Démonstration
Maintenant, si n est un entier relatif négatif,

exp(na) = exp(—ra)

or (—n) € N ; on peut donc écrire exp((—n)a) = (exp(a))~"

On en déduit que : exp(na) = —=(expa)".

"
(exp(a))~
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On note e 'image de 1 par la fonction exponentielle :
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Relation fonctionnelle

On note e 'image de 1 par la fonction exponentielle :

exp(1) =e.
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On note e 'image de 1 par la fonction exponentielle :

exp(1) =e.

e~ 2,718... et n’est pas un nombre rationnel; c’est un
nombre qui a des propriétés commune a celle de .
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Relation fonctionnelle

On note e 'image de 1 par la fonction exponentielle :

exp(1) =e.

e~ 2,718... et n’est pas un nombre rationnel; c’est un
nombre qui a des propriétés commune a celle de .

On peut alors écrire pour tout n € 7,
exp(N) = .o
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Relation fonctionnelle

On note e 'image de 1 par la fonction exponentielle :

exp(1) =e.

e~ 2,718... et n’est pas un nombre rationnel; c’est un
nombre qui a des propriétés commune a celle de .

On peut alors écrire pour tout n € 7,
exp(n) = exp(n x 1) = (exp(1))" = e".
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Notations

Cette écriture se prolonge a R :

Pour tout x € R, 'image de x par la fonction exponentielle se
note :
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Notations

Cette écriture se prolonge a R :

Pour tout x € R, 'image de x par la fonction exponentielle se
note :

exp(x) = e*
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Notations

Cette écriture se prolonge a R :

Pour tout x € R, 'image de x par la fonction exponentielle se
note :

exp(x) = e*

On peut donc écrire : €% = ...
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Notations

Cette écriture se prolonge a R :

Pour tout x € R, 'image de x par la fonction exponentielle se
note :

exp(x) = e*

On peut donc écrire : €% = 1
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Notations

Cette écriture se prolonge a R :

Pour tout x € R, 'image de x par la fonction exponentielle se
note :

exp(x) = e*

On peut donc écrire : e =1 et (eX)' = ...
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Relation fonctionnelle

Notations

Cette écriture se prolonge a R :

Pour tout x € R, 'image de x par la fonction exponentielle se
note :

exp(x) = e*

On peut donc écrire : €% = 1 et (&X)' = €.
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Utilisation : on peut écrire la relation fonctionnelle et les
propriétés de la fonction exponentielle avec la nouvelle
notation ; on reconnait alors les propriétés bien connues du
calcul avec des exposants :
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Relation fonctionnelle

Utilisation : on peut écrire la relation fonctionnelle et les
propriétés de la fonction exponentielle avec la nouvelle
notation ; on reconnait alors les propriétés bien connues du
calcul avec des exposants :

Quels que soient les réels a, b et I'entier relatif n :
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Notations

Relation fonctionnelle

Utilisation : on peut écrire la relation fonctionnelle et les
propriétés de la fonction exponentielle avec la nouvelle
notation ; on reconnait alors les propriétés bien connues du
calcul avec des exposants :

Quels que soient les réels a, b et I'entier relatif n :

a
a—b_i
= ob

(DI
o
|
‘ -
D
S
I\
Il
—~
(0]
j\)
~—
S

e?th —e%b ¢
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Notations

Utilisation : on peut écrire la relation fonctionnelle et les
propriétés de la fonction exponentielle avec la nouvelle
notation ; on reconnait alors les propriétés bien connues du
calcul avec des exposants :

Quels que soient les réels a, b et I'entier relatif n :

_b_ea
T eb

CDI
o
|
‘ -
D
S
[\
Il
—~
(0]
[\V)
~
>

ea+b _ eaeb ea

De plus, quels que soient les réels a, b : e = (e3)?
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Relation fonctionnelle

Utilisation : on peut écrire la relation fonctionnelle et les
propriétés de la fonction exponentielle avec la nouvelle
notation ; on reconnait alors les propriétés bien connues du
calcul avec des exposants :

Quels que soient les réels a, b et I'entier relatif n :

_b_ea
T eb

CDI
o
|
‘ -
D
S
[\
Il
—~
(0]
[\V)
~
>

ea+b _ eaeb ea

De plus, quels que soient les réels a, b : e = (e3)?

2
Par exemple : (e§> — e¥ donc ez = v/eX et en particulier,
1
ez = /e.
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Variations et limites

Théoreme
La fonction exponentielleest ........... ... ... ...
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Variations et limites ’ _, e
Tableau de variation et représentation graphique

Théoreme

La fonction exponentielle est strictement croissante sur R.
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Variations et limites ’ __, e
Tableau de variation et représentation graphique

Théoreme

La fonction exponentielle est strictement croissante sur R.

Par définition, exp’(x) = exp(x) et exp(x) > 0 pour tout x réel;
puisque sa dérivée est strictement positive sur R, on conclut
que exp est strictement croissante sur R.
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Théoréme
Théoréeme
Tableau de variation et représentation graphique

Variations et limites

Corollaire

a<bee?<eb et a=b+=e?=¢"




Théoréeme
Théoréme

Variations et limites ’ __, e
Tableau de variation et représentation graphique

Corollaire

a<bee?<eb et a=be>e?=¢gb

En particulier : si x < 0 alors e¥ < 1 etsix > 0alors e* > 1.

V.B.J.D.S.B. Diaporama du cours



Théoréeme
Théoréme
Tableau de variation et représentation graphique

Variations et limites

Théoreme




Théoréeme
Théoréme
Tableau de variation et représentation graphique

Variations et limites

Théoreme

lim e* =400
X— 400
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Variations et limites

Théoreme

lim e* =400 et lim e*=...
X— 400 X—>—00
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Théoréme
Tableau de variation et représentation graphique

Variations et limites

Théoreme

lim e* =400 et lim e*¥=0
X— 400 X—>—00




Théoréme

e . Théoréme
Variations et limites

Tableau de variation et représentation graphique

Démonstration

On considere la fonction f définie sur [0; +oo[ par f(x) = e* — x.
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Tableau de variation et représentation graphique

Démonstration
On considere la fonction f définie sur [0; +oo[ par f(x) = e* — x.

f'(x) =e* —1 et d’apres le corollaire précédent, f'(x) > 0.
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Tableau de variation et représentation graphique

Démonstration
On considere la fonction f définie sur [0; +oo[ par f(x) = e* — x.

f'(x) = e¥ — 1 et d’apres le corollaire précédent, f'(x) > 0.
La fonction f est donc croissante et de plus 7(0) = 1.
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Variations et limites ’ __, .
Tableau de variation et représentation graphique

Démonstration
On considere la fonction f définie sur [0; +oo[ par f(x) = e* — x.

f'(x) =e* —1 et d’apres le corollaire précédent, f'(x) > 0.
La fonction f est donc croissante et de plus 7(0) = 1.

On en déduit que, pour tout x € [0; +oof, f(x) >0

d’ou :e* > x.
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Variations et limites ’ __, .
Tableau de variation et représentation graphique

Démonstration
On considere la fonction f définie sur [0; +oo[ par f(x) = e* — x.

f'(x) =e* —1 et d’apres le corollaire précédent, f'(x) > 0.
La fonction f est donc croissante et de plus 7(0) = 1.

On en déduit que, pour tout x € [0; +oof, f(x) >0

d’ou :e* > x.

lim x = +oo donc, par comparaison, lim e* = +co.
X— 400 X— 400
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Variations et limites ’ __, .
Tableau de variation et représentation graphique

Démonstration
On considere la fonction f définie sur [0; +oo[ par f(x) = e* — x.

f'(x) =e* —1 et d’apres le corollaire précédent, f'(x) > 0.
La fonction f est donc croissante et de plus 7(0) = 1.

On en déduit que, pour tout x € [0; +oof, f(x) >0

d’ou :e* > x.

lim x = +oo donc, par comparaison, lim e* = +co.

X— 400 X— 400

: : 1 . :

lim €= lim = _lim — =0 (parinverse en
X——00 x——c0 € X  X—+to0€

utilisant le résultat précédent).
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Variations et limites

On construit le tableau de variation a I'aide des résultats
précédents.

La courbe passe par les points de coordonnées (0; 1) et (1;e).

La tangente a la courbe au point d’abscisse 0 a pour coefficient
directeur €% = 1.

Puisque lim &% =0, la courbe représentative de la fonction
X

——00
exponentielle admet en —co une asymptote d’équation y = 0,
soit 'axe des abscisses.
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Fonction exponentielle

f'(x) = expx

f(x) = expx
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Variations et limites Tableau de variation et représentation graphique

Fonction exponentielle

f'(x) = expx +

f(x) = expx
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Théoréme

Variations et limites Tableau de variation et représentation graphique

Fonction exponentielle

f'(x) = expx +

f(x) = expx /




Théoréme
Théoréme

Variations et limites Tableau de variation et représentation graphique

Fonction exponentielle

f'(x) = expx +

f(x) = expx /
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Variations et limites

FIGURE — Courbe représentative de la fonction exponentielle

V.B.J.D.S.B. Diap



Théoréme
Théoréme
Tableau de variation et représentation graphique

Variations et limites




Calcul de limites
Calcul de dérivées

Compléments

Théoreme




Calcul de limites
Calcul de dérivées

Compléments

Théoreme

Diapor
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Compléments

Théoreme

lim — =400 et lim xe*¥=...
X—+o0 X X—>—00

Diapor
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Calcul de dérivées

Compléments

Théoreme

lim — =400 et lim xe*=0
X—+o0 X X—>—00

Diapor



Calcul de limites
Calcul de dérivées

Compléments

Démonstration
On considere la fonction g définie sur [0; +oc| par
gx)=e —%.
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Calcul de dérivées

Compléments

Démonstration

On considere la fonction g définie sur [0; +oc| par
g =e —%.
g'(x) = e¥ — x et d’apres la démonstration précédente,

g(x) > 0.
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Démonstration

On considere la fonction g définie sur [0; +oc| par

g(x) =e*— "2—2 :

g'(x) = e¥ — x et d’apres la démonstration précédente,
g(x) > 0.

La fonction g est donc croissante et de plus g(0) = 1.

V.B.J.D.S.B. Diaporama du cours



Calcul de limites
Calcul de dérivées

Compléments

Démonstration

On considere la fonction g définie sur [0; +oc| par

gx)=e* - %.

g'(x) = e¥ — x et d’apres la démonstration précédente,

g(x) > 0.

La fonction g est donc croissante et de plus g(0) = 1.

On en déduit que, pour tout x € [0; +oo[, g(x) > 0, soit eX > X;
eX X

dou:7>§.
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Calcul de dérivées
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Démonstration

On considere la fonction g définie sur [0; +oc| par

gx)=e —%.

g'(x) = e¥ — x et d’apres la démonstration précédente,

g(x) > 0.

La fonction g est donc croissante et de plus g(0) = 1.

On en déduit que, pour tout x € [0; +oo[, g(x) > 0, soit eX > X;

dol e’ x
ou: —> - .
x 2
. X .
lim — = +oo donc, par comparaison,
X—+o0 2
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Calcul de limites
Calcul de dérivées

Compléments

Démonstration
On considere la fonction g définie sur [0; +oc| par
g(x) =e*— "2—2 :
g'(x) = e¥ — x et d’apres la démonstration précédente,
g(x) > 0.
La fonction g est donc croissante et de plus g(0) = 1.
X

On en déduit que, pour tout x € [0; +oo[, g(x) > 0, soit eX > ;
X

d'ot X
ou: —> —.
X 2
X _ X
lim — = 400 donc, par comparaison, lim — = +o0.
X—+00 2 X—+oo X
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Démonstration

On considere la fonction g définie sur [0; +oc| par

g(x) =e*— "2—2 :

g'(x) = e¥ — x et d’apres la démonstration précédente,

g(x) > 0.

La fonction g est donc croissante et de plus g(0) = 1.

On en déduit que, pour tout x € [0; +oo[, g(x) > 0, soit eX > X;
X

dot X
ou:—> .
X 2
X X
lim — = 400 donc, par comparaison, lim — = +o0.
X—+o00 2 X—+o00 X
: : X . X :
lim xe*¥= lim = lim —— =0 (parinverse en
X——00 Xx——00 X  X—ico eX

utilisant le résultat précédent.)
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Calcul de limites
Calcul de dérivées

Compléments

Théoreme

Démonstration

e0-&-x _ e0
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Théoreme

Démonstration
e0-&-x _ e0

est le taux d’accroissement de la fonction exp en 0.

o’
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Théoreme

Démonstration

e0-&-x _ e0

est le taux d’accroissement de la fonction exp en 0.
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Théoreme

Démonstration
e0-&-x _ a0

o|

est le taux d’accroissement de la fonction exp en 0.

Sa limite quand x tend vers 0 est le nombre dérivé de la
fonction exponentielle en 0 qui est exp0 = 1.
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Théoreme

Démonstration
e0-&-x _ a0

o|

est le taux d’accroissement de la fonction exp en 0.
Sa limite quand x tend vers 0 est le nombre dérivé de la
fonction exponentielle en 0 qui est exp0 = 1.

x4

. e
Donc |im
x—0
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Théoreme

Démonstration
e0—&-x a0

c'|

est le taux d’accroissement de la fonction exp en 0.
Sa limite quand x tend vers 0 est le nombre dérivé de la
fonction exponentielle en 0 qui est exp0 = 1.

X _ 1 eO+X . eO

. € .
Donc lim =Ilim = 1l,
x—0 X x—0 X
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Nous savons que si f est une fonction dérivable sur R,
(flax + b)) = a x f'(ax + b).
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Nous savons que si f est une fonction dérivable sur R,
(flax + b)) = a x f'(ax + b).

En appliquant ce résultat a la fonction exponentielle, (avec
a= —k et b=0), on obtient :

(exp(=kx)) = ...l
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Nous savons que si f est une fonction dérivable sur R,
(flax + b)) = a x f'(ax + b).

En appliquant ce résultat a la fonction exponentielle, (avec
a= —k et b=0), on obtient :

(exp(—kx))" = —k exp(—kx)
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Nous savons que si f est une fonction dérivable sur R,
(flax + b)) = a x f'(ax + b).

En appliquant ce résultat a la fonction exponentielle, (avec
a= —k et b=0), on obtient :

(exp(—kx))" = —k exp(—kx)

Plus généralement, on montre que :

si u est une fonction dérivable sur un intervalle / de R, alors la
fonction e est dérivable sur / et

(e"y =...
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Nous savons que si f est une fonction dérivable sur R,
(flax + b)) = a x f'(ax + b).

En appliquant ce résultat a la fonction exponentielle, (avec
a= —k et b=0), on obtient :

(exp(—kx))" = —k exp(—kx)

Plus généralement, on montre que :

si u est une fonction dérivable sur un intervalle / de R, alors la
fonction e est dérivable sur / et

(e")Y =uve
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Remarque
e étant strictement positif, le signe de (eV)’ est le méme que
celui de u'.
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Remarque
e étant strictement positif, le signe de (eV)’ est le méme que
celui de u'.

;U
Nous avons vu dans le chapitre précédent que : (v/u) = ENG

et (u") = nu/u"!
On constate que ces dérivées satisfont toutes a la formule
générale :

(Fu(x)))" = u'(x) x f'(u(x))
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Remarque
e étant strictement positif, le signe de (eV)’ est le méme que
celui de u'.

;U
Nous avons vu dans le chapitre précédent que : (v/u) = ENG

et (u") = nu/u"!
On constate que ces dérivées satisfont toutes a la formule
générale :

Exemple : (exp(—kx?)) = ...............
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Remarque
e étant strictement positif, le signe de (eV)’ est le méme que
celui de u'.

;U
Nous avons vu dans le chapitre précédent que : (v/u) = ENG

et (u") = nu/u"!
On constate que ces dérivées satisfont toutes a la formule
générale :

(Fu(x)))" = u'(x) x f'(u(x))

Exemple : (exp(—kx?))' = —2kx exp(—kx?)
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