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f ′ = f et f (0) = 1
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Définition
Cette fonction est appelée . . . . . . . . . . . . . . . . . . . . . . . . . . .

On note :
. . . . . . . . . . . . . . . . . . . . . . . .

Ainsi pour tout x réel : . . . . . . . . . . . . . . . . . . .

La fonction exponentielle est définie et continue sur R
puisqu’elle est dérivable sur R.
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On note :
exp : x ∈ R 7−→ exp(x)

Ainsi pour tout x réel : exp′(x) = exp(x) et exp(0) = 1.

La fonction exponentielle est définie et continue sur R
puisqu’elle est dérivable sur R.
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Pour tout réel x , exp(x) 6= 0.

Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Si φ a une dérivée nulle sur R alors φ est une fonction
. . . . . . . . .
Or φ(0) = . . . . . . . . . . . . . . . . . . on en déduit que, pour tout x réel,
φ(x) = . . .
soit exp(x) exp(−x) = . . ., d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Si φ a une dérivée nulle sur R alors φ est une fonction
. . . . . . . . .
Or φ(0) = . . . . . . . . . . . . . . . . . . on en déduit que, pour tout x réel,
φ(x) = . . .
soit exp(x) exp(−x) = . . ., d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0

Si φ a une dérivée nulle sur R alors φ est une fonction
. . . . . . . . .
Or φ(0) = . . . . . . . . . . . . . . . . . . on en déduit que, pour tout x réel,
φ(x) = . . .
soit exp(x) exp(−x) = . . ., d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction
. . . . . . . . .

Or φ(0) = . . . . . . . . . . . . . . . . . . on en déduit que, pour tout x réel,
φ(x) = . . .
soit exp(x) exp(−x) = . . ., d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction
constante.

Or φ(0) = . . . . . . . . . . . . . . . . . . on en déduit que, pour tout x réel,
φ(x) = . . .
soit exp(x) exp(−x) = . . ., d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction
constante.
Or φ(0) = . . . . . . . . . . . . . . . . . .

on en déduit que, pour tout x réel,
φ(x) = . . .
soit exp(x) exp(−x) = . . ., d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction
constante.
Or φ(0) = exp(0) exp(0) = 1;

on en déduit que, pour tout x réel,
φ(x) = . . .
soit exp(x) exp(−x) = . . ., d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction
constante.
Or φ(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
φ(x) = . . .

soit exp(x) exp(−x) = . . ., d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction
constante.
Or φ(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
φ(x) = 1,

soit exp(x) exp(−x) = . . ., d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction
constante.
Or φ(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
φ(x) = 1,
soit exp(x) exp(−x) = . . .,

d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction
constante.
Or φ(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
φ(x) = 1,
soit exp(x) exp(−x) = 1,

d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction
constante.
Or φ(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
φ(x) = 1,
soit exp(x) exp(−x) = 1, d’où on conclut que . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Pour tout réel x , exp(x) 6= 0.
Démonstration : soit φ la fonction définie pour tout x réel par
φ(x) = exp(x) exp(−x).
La fonction φ est dérivable sur R comme produit de fonctions
dérivables et
φ′(x) =(exp(x))′ exp(−x) + exp(x)(exp(−x))′ =
exp(x) exp(−x)− exp(x) exp(−x) = 0
Si φ a une dérivée nulle sur R alors φ est une fonction
constante.
Or φ(0) = exp(0) exp(0) = 1; on en déduit que, pour tout x réel,
φ(x) = 1,
soit exp(x) exp(−x) = 1, d’où on conclut que exp(x) 6= 0.

V. B. J. D. S. B. Diaporama du cours



Théorème et définition
Relation fonctionnelle

Variations et limites
Compléments

Théorème
Définition
Propriété
Propriété

Démonstration du théorème

L’existence d’une telle fonction est admise.
On démontre l’unicité : soit g une fonction dérivable sur R telle
que : g′ = g et g(0) = 1.
On peut définir pour tout x réel une fonction u par

u(x) =
g(x)
exp(x)

car exp(x) 6= 0 pour tout x .

Alors (u(x))′ =. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
La fonction u de dérivée nulle est donc constante sur R et
puisque u(0) = 1, on en déduit que u(x) = 1 pour tout x réel.
Ceci signifie que g(x) = exp(x) pour tout x réel.
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La fonction exponentielle est strictement positive : pour tout x
réel, exp(x) > 0.

Démonstration : la fonction exponentielle est continue sur R et
exp(0) = 1 ; s’il existe un réel x tel que exp(x) < 0 alors d’après
le théorème des valeurs intermédiaires, . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
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La fonction exponentielle est strictement positive : pour tout x
réel, exp(x) > 0.
Démonstration : la fonction exponentielle est continue sur R et
exp(0) = 1 ; s’il existe un réel x tel que exp(x) < 0 alors d’après
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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La fonction exponentielle est strictement positive : pour tout x
réel, exp(x) > 0.
Démonstration : la fonction exponentielle est continue sur R et
exp(0) = 1 ; s’il existe un réel x tel que exp(x) < 0 alors d’après
le théorème des valeurs intermédiaires, il existe a réel tel que
exp(a) = 0. Or ceci est impossible puisque pour tout réel x ,
exp(x) 6= 0.
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Démonstration
Soit a un réel quelconque. On pose, pour tout x réel,
g(x) = exp(x+a)

exp(x) ;

g est définie et dérivable sur R avec
g′(x) = exp′(x+a) exp(x)−exp(x+a) exp′(x)

(exp(x))2

= exp(x+a) exp(x)−exp(x+a) exp(x)
(exp(x))2

donc g′(x) = 0 pour tout x réel. La fonction g de dérivée nulle
est donc constante sur R,

soit g(x) = g(0) =
exp(a)
exp(0)

= exp(a) pour tout x réel.

En particulier pour x = b, on obtient

g(b) =
exp(a + b)
exp(b)

= exp(a)

d’où on déduit que exp(a + b) = exp(a) exp(b).
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Remarque
Soit x un réel quelconque. A l’aide de la relation fonctionnelle,
on peut écrire :

exp(x) = exp(x
2 + x

2 ) = exp(x
2 ) exp(

x
2 )) =

(
exp( x

2 )
)2.

Puisqu’un carré est positif et que exp(x) 6= 0, on montre à
nouveau que exp(x) > 0 pour tout x .
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Propriétés
Quels que soient les réels a, b et l’entier relatif n :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
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Propriétés
Quels que soient les réels a, b et l’entier relatif n :

exp(a− b) =
exp(a)
exp(b)

exp(−b) =
1

exp(b)

exp(na) = (expa)n
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Démonstration
On utilise la relation fonctionnelle :

• exp(a) = exp((a− b) + b) = exp(a− b) exp(b)

et puisque exp(b) 6= 0, on en déduit : exp(a− b) =
exp(a)
exp(b)

• l’égalité précédente avec a = 0 donne

exp(−b) =
exp(0)
exp(b)

=
1

exp(b)
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Démonstration
• Soit Pn la propriété " exp(na) = (expa)n " ;
nous allons d’abord démontrer par récurrence que Pn est vraie
pour tout n ∈ N.

Initialisation : exp(0× a) = exp(0) = 1 et (expa)0 = 1 donc P0
est vraie.

Hérédité : supposons que la propriété est vraie pour un certain
entier naturel k ; soit exp(ka) = (expa)k . Alors,
exp((k + 1)a) = exp(ka + a) = exp(ka) exp(a) = (expa)k exp(a)
d’après l’hypothèse de récurrence,
donc exp((k + 1)a) = (exp(a))k+1 et Pk+1 est vraie.

Conclusion : Pn est vraie pour tout n ∈ N.
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Démonstration
Maintenant, si n est un entier relatif négatif,
exp(na) = . . . . . . . . .

or (−n) ∈ N ; on peut donc écrire exp((−n)a) = . . . . . . . . .

On en déduit que : exp(na) = . . . . . . . . . . . . . . . . . .
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Démonstration
Maintenant, si n est un entier relatif négatif,

exp(na) =
1

exp(−na)

or (−n) ∈ N ; on peut donc écrire exp((−n)a) = (exp(a))−n

On en déduit que : exp(na) = . . . . . . . . . . . . . . . . . .
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Démonstration
Maintenant, si n est un entier relatif négatif,

exp(na) =
1

exp(−na)

or (−n) ∈ N ; on peut donc écrire exp((−n)a) = (exp(a))−n

On en déduit que : exp(na) =
1

(exp(a))−n = (expa)n.
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Notation
On note e l’image de 1 par la fonction exponentielle :

. . . . . . . . . . . . . . .

e ' 2,718 . . . et n’est pas un nombre rationnel ; c’est un
nombre qui a des propriétés commune à celle de π.

On peut alors écrire pour tout n ∈ Z,
exp(n) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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exp(1) = e.

e ' 2,718 . . . et n’est pas un nombre rationnel ; c’est un
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Notation
On note e l’image de 1 par la fonction exponentielle :

exp(1) = e.

e ' 2,718 . . . et n’est pas un nombre rationnel ; c’est un
nombre qui a des propriétés commune à celle de π.

On peut alors écrire pour tout n ∈ Z,
exp(n) = exp(n × 1) = (exp(1))n = en.
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Cette écriture se prolonge à R :

Notation
Pour tout x ∈ R, l’image de x par la fonction exponentielle se
note :

. . . . . . . . . . . . . . .

On peut donc écrire : e0 = . . . et (ex)′ = . . ..
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Cette écriture se prolonge à R :

Notation
Pour tout x ∈ R, l’image de x par la fonction exponentielle se
note :

exp(x) = ex

On peut donc écrire : e0 = 1

et (ex)′ = . . ..
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Utilisation : on peut écrire la relation fonctionnelle et les
propriétés de la fonction exponentielle avec la nouvelle
notation ; on reconnaît alors les propriétés bien connues du
calcul avec des exposants :

Quels que soient les réels a, b et l’entier relatif n :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

De plus, quels que soient les réels a, b : eab = (ea)b

Par exemple :
(

e
x
2

)2
= ex donc e

x
2 =
√

ex et en particulier,

e
1
2 =
√

e.
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Théorème
La fonction exponentielle est . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Par définition, exp′(x) = exp(x) et exp(x) > 0 pour tout x réel ;
puisque sa dérivée est strictement positive sur R, on conclut
que exp est strictement croissante sur R.
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que exp est strictement croissante sur R.
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En particulier : si x < 0 alors ex < 1 et si x > 0 alors ex > 1.
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Démonstration
On considère la fonction f définie sur [0; +∞[ par f (x) = ex − x .

f ′(x) = ex − 1 et d’après le corollaire précédent, f ′(x) ≥ 0.
La fonction f est donc croissante et de plus f (0) = 1.
On en déduit que, pour tout x ∈ [0; +∞[, f (x) > 0
d’où : ex > x .

lim
x−→+∞

x = +∞ donc, par comparaison, lim
x−→+∞

ex = +∞.

lim
x−→−∞

ex = lim
x−→−∞

1
e−x = lim

X−→+∞

1
eX = 0 (par inverse en

utilisant le résultat précédent).
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Théorème
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On construit le tableau de variation à l’aide des résultats
précédents.

La courbe passe par les points de coordonnées (0;1) et (1;e).

La tangente à la courbe au point d’abscisse 0 a pour coefficient
directeur e0 = 1.

Puisque lim
x−→−∞

ex = 0, la courbe représentative de la fonction

exponentielle admet en −∞ une asymptote d’équation y = 0,
soit l’axe des abscisses.
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Fonction exponentielle

x

f ′(x) = exp x

f (x) = exp x
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FIGURE – Courbe représentative de la fonction exponentielle
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ex

x
= . . . . . .
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x−→−∞
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Calcul de limites
Calcul de dérivées

Démonstration
On considère la fonction g définie sur [0; +∞[ par
g(x) = ex − x2

2 .

g′(x) = ex − x et d’après la démonstration précédente,
g′(x) > 0.
La fonction g est donc croissante et de plus g(0) = 1.
On en déduit que, pour tout x ∈ [0; +∞[, g(x) > 0, soit ex > x2

2

d’où :
ex

x
>

x
2

.

lim
x−→+∞

x
2
= +∞ donc, par comparaison, lim

x−→+∞

ex

x
= +∞.

lim
x−→−∞

xex = lim
x−→−∞

x
e−x = lim

X−→+∞
− X

eX = 0 (par inverse en

utilisant le résultat précédent.)
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lim
x−→0

ex − 1
x
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Démonstration

e0+x − e0

x
est le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sa limite quand x tend vers 0 est le . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Donc lim
x→0

ex − 1
x

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Nous savons que si f est une fonction dérivable sur R,
(f (ax + b))′ = a× f ′(ax + b).

En appliquant ce résultat à la fonction exponentielle, (avec
a = −k et b = 0), on obtient :

(exp(−kx))′ = . . . . . . . . . . . . . . .

Plus généralement, on montre que :

si u est une fonction dérivable sur un intervalle I de R, alors la
fonction eu est dérivable sur I et

(eu)′ = . . .
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Nous savons que si f est une fonction dérivable sur R,
(f (ax + b))′ = a× f ′(ax + b).

En appliquant ce résultat à la fonction exponentielle, (avec
a = −k et b = 0), on obtient :

(exp(−kx))′ = −k exp(−kx)

Plus généralement, on montre que :

si u est une fonction dérivable sur un intervalle I de R, alors la
fonction eu est dérivable sur I et

(eu)′ = u′eu
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Remarque
eu étant strictement positif, le signe de (eu)′ est le même que
celui de u′.

Nous avons vu dans le chapitre précédent que :
(√

u
)′
=

u′

2
√

u
et (un)′ = nu′un−1

On constate que ces dérivées satisfont toutes à la formule
générale :

(f (u(x)))′ = u′(x)× f ′(u(x))

Exemple : (exp(−kx2))′ = . . . . . . . . . . . . . . .
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Remarque
eu étant strictement positif, le signe de (eu)′ est le même que
celui de u′.

Nous avons vu dans le chapitre précédent que :
(√

u
)′
=

u′

2
√

u
et (un)′ = nu′un−1

On constate que ces dérivées satisfont toutes à la formule
générale :

(f (u(x)))′ = u′(x)× f ′(u(x))

Exemple : (exp(−kx2))′ = −2kx exp(−kx2)
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