
Terminale S (2016-2017)
Géométrie dans l’espace

1 Positions relatives de droites et de plans

1.1 Positions relatives de deux droites

Deux droites de l’espace sont :

• soit . . . . . . . . . . . . . . . . . . . . . elles sont alors

soit . . . . . . . . . . . . . . .

soit . . . . . . . . . . . . . . . . . . et dans ce cas
elles sont

. . . . . . . . . . . . . . . . . . . . . . . .

ou . . . . . . . . . . . . . . . . . . . . . . . .

• soit . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Positions relatives d’une droite et d’un plan

Une droite et un plan de l’espace sont :
• soit . . . . . . . . . . . . , et l’intersection est alors un . . . . . . . . . . . . . . . ;
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• soit . . . . . . . . . . . . . . . . . . et dans ce cas :

la droite est . . . . . . . . . . . . . . . . . . . . . . . . . . .

ou la droite est . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Positions relatives de deux plans

Deux plans de l’espace sont :

• soit . . . . . . . . . . . . . . . , et dans ce cas l’in-
tersection est une droite ;

• soit . . . . . . . . . . . . . . . , et dans ce cas ils sont

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Exemple du cube
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2 Parallélisme

2.1 Entre droites

• Deux droites parallèles à une même troisième sont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• Si deux droites sont parallèles, alors tout plan qui coupe l’une . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Entre plans

• Deux plans parallèles à un même troisième sont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• Si deux droites sécantes d’un plan sont parallèles à un second plan, alors les deux plans sont

. . . . . . . . . . . . . . .
• Un plan coupe deux plans parallèles selon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remarque
Toutes les propriétés de géométrie plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Entre droites et plans

• Si deux plans sont parallèles, alors toute droite parallèle à l’un est . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Si une droite est parallèle à une seconde, alors elle est parallèle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .

• Si une droite est parallèle à deux plans sécants, alors elle est parallèle . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Théorème du toit (preuve dans la suite du cours)
On considère deux plans P et P ′ ayant pour in-
tersection la droite ∆.
On considère également deux droites d et d′,
telles que :
• d est contenue dans P ;
• d′ est contenue dans P ′ ;
• d et d′ sont parallèles entre elles.
Alors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

3 Orthogonalité

3.1 Orthogonalité de droites

Définition

Deux droites de l’espace sont orthogonales si
leurs parallèles passant par un point quelconque
sont . . . . . . . . . . . . . . . . . . . . . . . .

Propriété
Si deux droites sont parallèles, alors tout droite orthogonale à l’une est . . . . . . . . . . . . . . . . . . . . . . . .
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3.2 Orthogonalité d’une droite et d’un plan

Définition

Une droite d est orthogonale à un plan P si elle
est orthogonale à . . . . . . . . . . . . . . . . . . . . . . . .

Propriétés
• Une droite est orthogonale à un plan si et seulement si elle est orthogonale à . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
• Si deux droites sont parallèles, tout plan orthogonal à l’une est alors . . . . . . . . . . . . . . . . . . . . . . . .
• Si deux droites sont orthogonales à un même plan, alors elles sont . . . . . . . . . . . . . . . . . . . . .
• Si deux plans sont parallèles, toute droite orthogonale à l’un est . . . . . . . . . . . . . . . . . . . . . . . .
• Si deux plans sont orthogonaux à une même droite, alors ils sont . . . . . . . . . . . . . . . . . . . . .

4 Géométrie vectorielle dans l’espace

4.1 Notion de vecteur dans l’espace

Définition
Un vecteur de l’espace est défini par . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remarque
Les vecteurs de l’espace suivent les mêmes règles de construction qu’en géométrie plane ; relation de

Chasles, colinéarité, etc . . . restent valides.

4.2 Caractérisation d’un plan

Définition

Soient A un point de l’espace, et deux vecteurs
de l’espace

→
u et

→
v non colinéaires.

L’ensemble des points M de l’espace tels que
−→
AM= x

→
u +y

→
v , avec x et y des réels, est . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remarques
– Dans ces conditions, le triplet (A;

→
u,
→
v ) est un . . . . . . . . . . . . . . . . . . . . . . . . . . .

– Un plan est ainsi totalement déterminé par . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
– Les plans (A;

→
u,
→
v ) et (B;

→
u,
→
v ) (caractérisés par un point et deux vecteurs) sont . . . . . . . . . . . . . . .

pour tous points A et B.

4.3 Vecteurs coplanaires

Définition
On dit que des vecteurs sont coplanaires si et seulement si leurs représentants de même origine A ont

leurs extrémités dans un même plan passant par A.

Propriétés

Bernelas-Bays 4 Lycée Les Eucalyptus



– Trois vecteurs
→
u ,
→
v et

→
w sont coplanaires s’il existe trois réels α, β et γ non tous nuls tels que :

. . . . . . . . . . . . . . . . . . . . . . . . . . .

– Trois vecteurs
→
u ,
→
v et

→
w ne sont pas coplanaires si et seulement si l’égalité . . . . . . . . . . . . . . . . . . . . . . . .

implique . . . . . . . . . . . . . . . . . . . . . . . .

Remarques
– Si

→
u et

→
v ne sont pas colinéaires, il suffit en fait de montrer qu’il existe deux réels a et b tels que

. . . . . . . . . . . . . . . . . . . . . . . . pour montrer la coplanarité des trois vecteurs.
– Deux vecteurs sont . . . . . . . . . . . . . . . . . . . . . . . .

Théorème
Quatre points A, B, C et D sont coplanaires si et seulement si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Propriété et définition
Soit

→
u un vecteur de l’espace et

→
i ,
→
j et

→
k trois vecteurs non coplanaires.

Alors il existe un unique triplet de réels x, y et z tels que
→
u= x

→
i +y

→
j +z

→
k .

(x; y; z) sont les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dans la base (
→
i ,
→
j ,
→
k ).

4.4 Application : démonstration du théorème du toit

Rappel du théorème
On considère deux plans P et P ′ ayant pour in-
tersection la droite ∆.
On considère également deux droites d et d′,
telles que :
• d est contenue dans P ;
• d′ est contenue dans P ′ ;
• d et d′ sont parallèles entre elles.
Alors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

Démonstration
d et d′ sont parallèles : on note

→
u un vecteur directeur de d et de d′, et

→
w un vecteur directeur de ∆.

On veut montrer que
→
u et

→
w sont colinéaires (et donc par suite, d et d′ seront bien parallèles à ∆).

Notons (
→
u,
→
v ) un couple de vecteurs directeurs du plan P , et (

→
u,
→
v′) un couple de vecteurs directeurs

du plan P ′. Les vecteurs
→
u ,
→
v et

→
v′ sont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

La droite ∆ est contenue dans P , donc
→
w,
→
u et

→
v sont . . . . . . . . . . . . . . . . . . . . . Ainsi il existe des réels

x1 et y1 tels que . . . . . . . . . . . . . . . . . . . . . . . .

De même, la droite ∆ est contenue dans P ′, donc
→
w,
→
u et

→
v′ sont . . . . . . . . . . . . . . . . . . . . . Ainsi il existe

des réels x2 et y2 tels que . . . . . . . . . . . . . . . . . . . . . . . .
Ainsi, . . . . . . . . . . . . . . . . . . . . . . . . . . .
Donc . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comme les vecteurs

→
u ,
→
v et

→
v′ ne sont pas coplanaires, on a forcément . . . . . . . . . . . . . . . . . . . . . . . .

Ainsi
→
w=. . . . . . , et donc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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5 Repérage dans l’espace

5.1 Repères de l’espace

Définition
Si
→
i ,
→
j et

→
k sont trois vecteurs non coplanaires et O un point fixe, alors on munit l’espace du repère

(O;
→
i ,
→
j ,
→
k ).

D’après la définition des coordonnées d’un vecteur, il existe un unique triplet (x; y; z) tel que pour

tout point M de l’espace, on a
−→
OM= x

→
i +y

→
j +z

→
k .

x est l’. . . . . . . . . . . . . . . du point M , y est l’. . . . . . . . . . . . . . . du point M et z est la . . . . . . . . . . . .

On dit que le repère est orthonormé si
→
i ,
→
j et

→
k sont trois vecteurs deux à deux orthogonaux et de

même norme ||
→
i || = ||

→
j || = ||

→
k || = 1.

5.2 Colinéarité et alignement dans l’espace

Théorèmes
• Deux vecteurs non nuls

→
u et

→
v sont colinéaires si et seulement si il existe un réel k tel que

. . . . . . . . . . . . , c’est-à-dire tel que


. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

• Si A(xA; yA; zA) et B(xB; yB; zB), alors le vecteur
−→
AB a pour coordonnées . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
• Trois points A, B et C de l’espace sont alignés si et seulement si il existe un réel k tel que
. . . . . . . . . . . .

5.3 Milieu, distance

Théorèmes
• Le milieu I du segment [AB] a pour coordonnées : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dans un repère orthonormé :
• La norme du vecteur

→
u est || →u || = . . . . . . . . . . . . . . . . . ..

• La distance AB est donnée par : AB = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Représentations paramétriques

6.1 Représentations paramétriques d’une droite

Théorème
M(x; y; z) appartient à la droite ∆ passant par A(xA; yA; zA) et de vecteur directeur non nul

→
u

(a; b; c) si et seulement si il existe un réel t tel que :
x = . . . . . . . . .
y = . . . . . . . . .
z = . . . . . . . . .

Preuve
M ∈ ∆ si et seulement si les vecteurs

−→
AM (x− xA; y − yA; z − zA) et

→
u (a; b; c) sont colinéaires,

c’est-à-dire si et seulement si il existe un réel t tel que . . . . . . . . . . . . , ce qui équivaut à :
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
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Définition
x = at+ xA
y = bt+ yA
z = ct+ zA

, t ∈ R, est appelé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remarques
– Il existe plusieurs représentations paramétriques pour une même droite : chaque représentation

dépend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– Si on restreint t ∈ R+, alors
−→
AM et

→
u sont de même sens et on obtient alors une représentation

paramétrique de . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Représentations paramétriques d’un plan

Théorème
M(x; y; z) appartient au plan P passant par A(xA; yA; zA) et de vecteurs directeurs non colinéaires

→
u (a; b; c) et

→
v (a′; b′; c′) si et seulement si il existe un couple de réels t et t′ tels que :

x = . . . . . . . . . . . . . . .
y = . . . . . . . . . . . . . . .
z = . . . . . . . . . . . . . . .

Définition
x = at+ a′t′ + xA
y = bt+ b′t′ + yA
z = ct+ c′t′ + zA

, t ∈ R et t′ ∈ R, est appelé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remarque
Il existe plusieurs représentations paramétriques pour un même plan : chaque représentation dépend

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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