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Opérations sur les complexes

Calculs
Conjugué

Gréace aux propriétés de I'ensemble C, on calcule dans C
comme dans R, en tenant compte de i> = —1. Ainsi, en notant
z=a+bietzZ =4 +bi,ona:

@ SOMME : Z 4+ Z =

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes

Calculs
Conjugué

Gréace aux propriétés de I'ensemble C, on calcule dans C
comme dans R, en tenant compte de i> = —1. Ainsi, en notant
z=a+bietzZ =4 +bi,ona:

e somme:z+ 2z =(a+bi)+(@+bi)=(a+a)+(b+b)i

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes

Calculs
Conjugué

Gréace aux propriétés de I'ensemble C, on calcule dans C
comme dans R, en tenant compte de i> = —1. Ainsi, en notant
z=a+bietzZ =a+bi,ona:

e somme:z+ 2z =(a+bi)+(ad +bi)=(a+ &)+ (b+ b)i.

e produit:zz = .. ...

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes

Calculs
Conjugué

Grace aux propriétés de I'ensemble C, on calcule dans C
comme dans R, en tenant compte de i> = —1. Ainsi, en notant
z=a+bietzZ =ad +bi,ona:

e somme:z+Z2Z =(a+bi)+ (& +bi)=(a+a)+ (b+Vb)i.

e produit: zz' = (a+ bi)(d + b'i) = ad + ab'i + abi + bb'i? =
(ad — bb') + (ab' + ab)i

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes

Calculs
Conjugué

Grace aux propriétés de I'ensemble C, on calcule dans C
comme dans R, en tenant compte de i> = —1. Ainsi, en notant
z=a+bietzZ =ad +bi,ona:

e somme:z+Z2Z =(a+bi)+ (& +bi)=(a+a)+ (b+Vb)i.

o produit: zz' = (a+ bi)(d + b/i) = ad + ab'i + abi + bb'i? =
(ad — bb') + (ab’ + ab)i.

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes

Calculs
Conjugué

¢ identités remarquables : elles restent valables dans R, en
particulier :
(a+bi)a—bi)=.........
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z+zZ=2Re(2) et z—2Z=2iIm(z)
Il en résulte que :
- "Le nombre complexe z est réel" équivauta "z =2z ".
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"z+Z=0"

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes
Calculs

Conjugué

Propriétés




Opérations sur les complexes
Calculs

Conjugué

Propriétés

z+2=2+72




Opérations sur les complexes
Calculs

Conjugué

Propriétés

z+2Z=Zz+ 7. zzZl=......




Opérations sur les complexes
Calculs

Conjugué

Propriétés

z+2Z=Zz+ 7. zzZl=zZxZ




Opérations sur les complexes
Calculs

Conjugué

Propriétés

z+2Z=Zz+ 7. zzZl=zZxZ




Opérations sur les complexes
Calculs

Conjugué

zzZl=zZxZ

Propriétés

z+2Z=Zz+ 7.

N

NI



Opérations sur les complexes

Calculs
Conjugué

Propriétés

pour

N
N
I
NI
X
N
|
3
I
N

z+2Z=Zz+ 7.
tout naturel n.

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes

Calculs
Conjugué

Propriétés

pour

N
N
I
NI
X
N
|
3
I
N

z+2Z=Zz+ 7.
tout naturel n.

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes
Calculs

Conjugué

3|

N
Il
N]

Propriétés
z'. " pour

z+2Z=Zz+ 7.
tout naturel n.

V.B.J.D.S.B. Diaporama du cours




Opérations sur les complexes

Calculs
Conjugué

Propriétés

|
N
Il

N

z+27Z=z2+7. zZ7 =Zx 7. pour

tout naturel n.

@
N\
N
o
—~
NES
SN—
Il
f—
@
@
—
NN
SN—
Il
NN

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes

Calculs
Conjugué

Propriétés

N
N
|
NI
X
N
|
3
I
N

z4+272 =247, pour

tout naturel n.

12
N\
N
o
—~
QUEN
SN—
Il
N
@
@
—
NN
SN—
Il
NN

Remarque

Z=...

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes

Calculs
Conjugué

Propriétés

N
N
|
NI
X
N
|
3
I
N

z4+272 =247, pour

tout naturel n.

12
N\
N
o
—~
QUEN
SN—
Il
N
@
@
—
NN
SN—
Il
NN

Remarque

Z=2z

V.B.J.D.S.B. Diaporama du cours



Opérations sur les complexes

Calculs
Conjugué

Propriétés

|
N
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z+2Z=Zz+ 7. zZl=Zx Z'.
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pour
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Z=2z ZZ=......
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Opérations sur les complexes

Calculs
Conjugué

Propriétés

N
|
N
X
N
|
I
N

72472 =Z+7. pour

tout naturel n.

siz #0 (%):% et (;):§
Remarque
Z=2z z2Z = a° + b?
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Opérations sur les complexes

Calculs
Conjugué

Propriétés

|
I
N

z+z2 =Zz+ 7. zzZl =Zx 7.
tout naturel n.

pour

siz #0 (%):% et (;):§
Remarque
Z=2z z2Z = a + b?
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Equation du second degré a coefficients réels

Théoréme

Dans C, I'équation az? + bz + ¢ =0,a# 0, a, b, c réels,
a toujours des solutions.

On note A le discriminant de cette équation :
A =b® - 4ac

e si A >0, I'équation a deux solutions réelles :
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Equation du second degré a coefficients réels

Théoréme

Dans C, I'équation az?> + bz + ¢ =0, a # 0, a, b, ¢ réels,
a toujours des solutions.

On note A le discriminant de cette équation :
A = b? —4ac
e si A > 0, 'équation a deux solutions réelles :

_—b—VA o _ —b+VA

4 2a t 2 2a
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Equation du second degré a coefficients réels

Théoréme

Dans C, I'équation az?> + bz + ¢ =0, a # 0, a, b, ¢ réels,
a toujours des solutions.

On note A le discriminant de cette équation :
A = b? —4ac
e si A > 0, 'équation a deux solutions réelles :

_—b-—VA o _ —b+VA

4 2a tz 2a
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Equation du second degré a coefficients réels

e si A =0, I'équation a une solution double réelle :
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Equation du second degré a coefficients réels

e si A =0, I'équation a une solution double réelle :

—b

Z1:ZZ:?&
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Equation du second degré a coefficients réels

e si A =0, I'équation a une solution double réelle :

—b

21222:?a

e si A <0, I'équation a deux solutions complexes conju-
guées :
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Equation du second degré a coefficients réels

e si A =0, I'équation a une solution double réelle :

Z1 =2 = —b
1T %7 22

e si A <0, I'équation a deux solutions complexes conju-
guées :

Z1 =

—b—iv—-A —b+iv—-A _
T 2a MRS 5

avec Zo =
> 2 1
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Equation du second degré a coefficients réels

e si A =0, I'équation a une solution double réelle :

Z1 =2 = —b
1T %7 22

e si A <0, I'équation a deux solutions complexes conju-
guées :

Z1 =

—b—iv—-A —b+iv—-A _
T 2a MR 55

avec zZo =
> 2 1
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Equation du second degré a coefficients réels

Conséquence
Dans C, le trinbme az? + bz + ¢ se factorise toujours sous la
forme : az? + bz + ¢ = a(z — z)(z — zo).
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Equation du second degré a coefficients réels

Démonstration
On écrit le trinéme az? + bz + ¢ sous la forme canonique :

AZ2 Dz C = o
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Equation du second degré a coefficients réels

Démonstration
On écrit le trinéme az? + bz + ¢ sous la forme canonique :

a2ibzic—al|(z+2 Pt —al(z+ 2 gy
+ B 2a 42 B 2a 422
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Equation du second degré a coefficients réels

Démonstration
On écrit le trinéme az? + bz + ¢ sous la forme canonique :

b\? b?-4ac
2a

az’+bz+c=allz+— —a z+£ Z—A
N 42 N 2a 42

Puisque a # 0, résoudre dans C I'équation az® + bz + ¢ = 0,
c’est résoudre I'équation
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Equation du second degré a coefficients réels

Démonstration
On écrit le trinéme az® + bz + ¢ sous la forme canonique :

,. bN\? PP-dac) I/ b\ A
2a 432 N 2a 452

Puisque a # 0, résoudre dans C I'équation az® + bz + ¢ = 0,
c’est résoudre 'équation

z+£ 2—A—O
2a 432
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Equation du second degré a coefficients réels

Démonstration
On écrit le trinéme az® + bz + ¢ sous la forme canonique :

,. bN\? PP-dac) I/ b\ A
2a 432 N 2a 452

Puisque a # 0, résoudre dans C I'équation az® + bz + ¢ = 0,
c’est résoudre 'équation

z+£ 2—A—O
2a 432
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az’+bz+c=a




Equation du second degré a coefficients réels

e siA > 0ousiA=0,on sait que I'équation a deux solutions
dans R et deux seulement (distinctes ou égales). Elle a donc
deux solutions complexes et deux seulement puisque R est

inclus dans C.
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Equation du second degré a coefficients réels

e si A <0,alors v/—A existe etavec i? = —1,0n a
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Equation du second degré a coefficients réels

e si A <0,alors v/—A existe etavec i? = —1,0n a

(iV=D0)? = A.
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Equation du second degré a coefficients réels

e si A <0,alors v/—A existe etavec i? = —1,0n a

(iv/—A)? = A. Donc :
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Equation du second degré a coefficients réels

e si A <0,alors v/—A existe etavec i? = —1,0n a

(iv/—A)? = A. Donc :

b\2 A b\2 [ivV=DB\?
<”2a> ‘4a2—<“za> ‘( 2a )

(e e 2 )

2a 2a
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Equation du second degré a coefficients réels

e si A <0,alors v/—A existe etavec i? = —1,0n a

(iv—A)? = A. Donc :

(o2 - o) (5
(e 2 )

2a 2a 2a 2a

Ainsi I'’équation a deux solutions :

Zy = i etzo=......... L. avec z, = 7.
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Equation du second degré a coefficients réels

e si A <0,alors v/—A existe etavec i? = —1,0n a

(iv—A)? = A. Donc :

Era) e (ra) (%)
(e BB (s £ D)

2a 2a 2a 2a

Ainsi I'’équation a deux solutions :

_-b-iW=A __ —b+iV-B

1 2a 2 2a

avec zp = 7.
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Equation du second degré a coefficients réels

e si A <0,alors v/—A existe etavec i? = —1,0n a

(iv—A)? = A. Donc :

(o2 e () (5
(i)

2a 2a 2a 2a

Ainsi I'équation a deux solutions :

_—b-i=A _ _—b+iV=B

1 2a 2 2a

avec zo = z4.
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Equation du second degré a coefficients réels

Exemple :
Résoudre dans I'équation : 42> — 12z + 153 =0

On calcule le discriminant :
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Equation du second degré a coefficients réels

Exemple :
Résoudre dans I'équation : 42> — 12z + 153 =0

On calcule le discriminant :
A = (—12)? — 4 x 4 x 153 = —2304 = (48i).
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Equation du second degré a coefficients réels

Exemple :
Résoudre dans I'équation : 42> — 12z + 153 =0

On calcule le discriminant :
A = (—12)? — 4 x 4 x 153 = —2304 = (48i).

Léquation admet deux solutions complexes conjuguées :
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Equation du second degré a coefficients réels

Exemple :
Résoudre dans I'équation : 422 — 12z + 153 =0

On calcule le discriminant :
A= (—12)2 —4 x4 x 153 = —2304 = (48i)2.

Léquation admet deux solutions complexes conjuguées :

12-48/ 3 . 12+48/ 3
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Equation du second degré a coefficients réels

Exemple :
Résoudre dans I'équation : 422 — 12z + 153 =0

On calcule le discriminant :
A= (—12)2 —4 x4 x 153 = —2304 = (48i)2.

Léquation admet deux solutions complexes conjuguées :

12-48/ 3 . 12+48/ 3
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Equation du second degré a coefficients réels

Exemple :
Résoudre dans I'équation : 42> — 12z + 153 =0

On calcule le discriminant :
A= (—12)2 —4 x4 x153 = -2304 = (48i)2.

L'équation admet deux solutions complexes conjuguées :

12 +48i .
— 6i etzgz;&:§+6/

1248/ 3
- 8 2

A= g 2
3 .3
S=1{; —6ii +6i}
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Equation du second degré a coefficients réels

Exemple :
Résoudre dans I'équation : 42> — 12z + 153 =0

On calcule le discriminant :
A= (—12)2 —4 x4 x153 = -2304 = (48i)2.

L'équation admet deux solutions complexes conjuguées :

12 +48i .
— 6i etzgz;&:§+6/

1248/ 3
- 8 2

A= g 2
S:{g—6h§+6@
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

. , N , . — —
Dans le plan muni d’un repére orthonormé direct (O; u, v) :

e atout complexe z = a+ bi avec a et b réels, on associe le
. — p
point M(a; b) et le vecteur w (a; b) appelés ............

V.B.J.D.S.B. Diaporama du cours



Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

. , N , . — —
Dans le plan muni d’un repére orthonormé direct (O; u, v) :

e atout complexe z = a+ bi avec a et b réels, on associe le
—
point M(a; b) et le vecteur w (a; b) appelés point image
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

. , N , . — —
Dans le plan muni d’un repére orthonormé direct (O; u, v) :

e atout complexe z = a+ bi avec a et b réels, on associe le
—
point M(a; b) et le vecteur w (a; b) appelés point image et
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Définition
Remarques

Représentation géométrique d’un nombre complexe Propriétés

. , N , . — —
Dans le plan muni d’un repére orthonormé direct (O; u, v) :
e atout complexe z = a+ bi avec a et b réels, on associe le

point M(a; b) et le vecteur w (a; b) appelés point image et
vecteur image

V.B.J.D.S.B. Diaporama du cours



Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

Dans le plan muni d’un repere orthonormé direct (O; U, 7) :

e atout complexe z = a+ bi avec a et b réels, on associe le
— . . .

point M(a; b) et le vecteur w (a; b) appelés point image et

vecteur image de z.

e a tout point M(a; b) et a tout vecteur w (a; b) on associe le
nombre complexe z = a+ bi, appelé ............
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

Dans le plan muni d’un repere orthonormé direct (O; U, 7) :

e atout complexe z = a+ bi avec a et b réels, on associe le
. — , . .

point M(a; b) et le vecteur w (a; b) appelés point image et

vecteur image de z.

N . N — .
e atout point M(a; b) et a tout vecteur w (a; b) on associe le
nombre complexe z = a+ bi, appelé affixe de M
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

Dans le plan muni d’un repere orthonormé direct (O; U, 7) :

e atout complexe z = a+ bi avec a et b réels, on associe le
. — , . .

point M(a; b) et le vecteur w (a; b) appelés point image et

vecteur image de z.

N . N — .
e atout point M(a; b) et a tout vecteur w (a; b) on associe le
nombre complexe z = a+ bi, appelé affixede Met............
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

Dans le plan muni d’un repere orthonormé direct (O; U, 7) :

e atout complexe z = a+ bi avec a et b réels, on associe le
_>

point M(a; b) et le vecteur w (a; b) appelés point image et

vecteur image de z.

e a tout point M(a; b) et a tout vecteur w (a; b) on associe le
. P . . —
nombre complexe z = a + bi, appelé affixe de M et affixe de w.
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

Dans le plan muni d’un repere orthonormé direct (O; U, 7) :

e atout complexe z = a+ bi avec a et b réels, on associe le
_>

point M(a; b) et le vecteur w (a; b) appelés point image et

vecteur image de z.

e a tout point M(a; b) et a tout vecteur w (a; b) on associe le
. P . . —
nombre complexe z = a+ bi, appelé affixe de M et affixe de w.

Le plan est alors appelé plan complexe.
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

2 W d'affixe 3+2i




Définition
Remarques

Représentation géométrique d’un nombre complexe Propriétés

e Le pointimage d’'un réel appartiental.....................




Définition
Remarques

Représentation géométrique d’un nombre complexe Propriétés

e Le pointimage d’'un réel appartient a I'axe des abscisses.
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Définition
Remarques

Représentation géométrique d’un nombre complexe Propriétés

e Le pointimage d’'un réel appartient a I'axe des abscisses.
Dans le plan complexe, I'axe des abscisses est appelé axe . ..
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Définition
Remarques

Représentation géométrique d’un nombre complexe Propriétés

e Le pointimage d’'un réel appartient a I'axe des abscisses.
Dans le plan complexe, I'axe des abscisses est appelé axe des
réels.
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

e Le pointimage d’'un réel appartient a I'axe des abscisses.
Dans le plan complexe, I'axe des abscisses est appelé axe des
réels.

e Le pointimage d’'un imaginaire pur appartiental’.........
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

e Le pointimage d’'un réel appartient a I'axe des abscisses.
Dans le plan complexe, I'axe des abscisses est appelé axe des
réels.

e Le pointimage d’'un imaginaire pur appartient a 'axe des
ordonnées.
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

e Le pointimage d’'un réel appartient a I'axe des abscisses.
Dans le plan complexe, I'axe des abscisses est appelé axe des
réels.

e Le pointimage d’'un imaginaire pur appartient a 'axe des
ordonnées. Dans le plan complexe, I'axe des ordonnées est
appelé axedes ............
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

e Le pointimage d'un réel appartient a 'axe des abscisses.
Dans le plan complexe, I'axe des abscisses est appelé axe des
réels.

e Le pointimage d’'un imaginaire pur appartient a 'axe des
ordonnées. Dans le plan complexe, I'axe des ordonnées est
appelé axe des imaginaires.
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

e Le pointimage d'un réel appartient a 'axe des abscisses.
Dans le plan complexe, I'axe des abscisses est appelé axe des
réels.

e Le pointimage d’'un imaginaire pur appartient a 'axe des
ordonnées. Dans le plan complexe, I'axe des ordonnées est
appelé axe des imaginaires.
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Définition
Remarques

Représentation géométrique d’'un nombre complexe Propriétés

Le plan complexe est muni d’'un repere orthonormé direct
— —
(O; u, v).
On consideére les points A et B d’affixes respectives z, et zg.
Alors :

—> .
e Le vecteur AB a pour affixe .........
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Définition
Remarques

Représentation géométrique d’'un nombre complexe Propriétés

Le plan complexe est muni d’'un repere orthonormé direct
— —
(O; u, v).
On consideére les points A et B d’affixes respectives z, et zg.
Alors :

_)
e Le vecteur AB a pour affixe zg — za.
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

Le plan complexe est muni d’'un repere orthonormé direct
— —
(O; u, v).
On consideére les points A et B d’affixes respectives z, et zg.
Alors :
—> .
e Le vecteur AB a pour affixe zg — za.

e Le milieu / du segment [AB] a pour affixe ...............
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

Le plan complexe est muni d’'un repere orthonorme direct
- =
(O; u, v).
On considére les points A et B d’affixes respectives z4 et zg.
Alors :

N
e Le vecteur AB a pour affixe zg — za.

Zp + ZB

e Le milieu / du segment [AB] a pour affixe z; = 5
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

Le plan complexe est muni d’'un repere orthonorme direct
- =
(O; u, v).
On considére les points A et B d’affixes respectives z4 et zg.
Alors :

N
e Le vecteur AB a pour affixe zg — za.

Zp + ZB

e Le milieu / du segment [AB] a pour affixe z; = 5
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

. - . .
On considere les vecteurs w et w’ d’affixes respectives z et Z/,
et le réel A

— , .
e w+ W apouraffixe.........
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

. - .
On considere les vecteurs w et w’ d’affixes respectives z et Z/,
et le réel A

e wiwa i !
pour affixe z + Z'.
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

. - . .
On considere les vecteurs w et w’ d’affixes respectives z et Z/,
et le réel A

e wiwa i !
pour affixe z + Z'.
— .
e M wapouraffixe......
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

. - . .
On considere les vecteurs w et w’ d’affixes respectives z et Z/,
et le réel A

e wiwa i !
pour affixe z + Z'.
e Mwa pour affixe \z.
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Définition
Remarques
Propriétés

Représentation géométrique d’un nombre complexe

. - . .
On considere les vecteurs w et w’ d’affixes respectives z et Z/,
et le réel A

e Wwt+wa ffi /
pour affixe z + Z'.
e Mwa pour affixe \z.

Preuve :

Il s’agit simplement d’'une autre écriture des propriétés déja
connues pour les coordonnées.
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Module et argument
Forme trigonométrique

Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Le plan complexe est muni d’'un repere orthonorme direct

Définition
Soit z un nombre complexe et M son image dans le plan

complexe.
Le modulede z,noté |z|,est.............. ..l
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Module et argument
Forme trigonométrique

Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Le plan complexe est muni d’'un repere orthonorme direct

Définition
Soit z un nombre complexe et M son image dans le plan

complexe.

Le module de z, noté |z|, est la distance OM : |z| = OM.

V.B.J.D.S.B. Diaporama du cours



Module et argument
Forme trigonométrique

Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Le plan complexe est muni d’'un repere orthonorme direct

Définition

Soit z un nombre complexe et M son image dans le plan
complexe.

Le module de z, noté |z|, est la distance OM : |z| = OM.

Si z est non nul, on appelle argument de z, noté arg(z), toute
mesureenradiande ......................L.

V.B.J.D.S.B. Diaporama du cours



Module et argument
Forme trigonométrique

Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Le plan complexe est muni d’un repere orthonormé direct

Soit z un nombre complexe et M son image dans le plan
complexe.

Le module de z, noté |z|, est la distance OM : |z| = OM.

Si z est non nul, on appelle argument de z, noté arg(z), toute

- —
mesure en radian de I'angle orienté (u; OM) :
—_
arg(z) = (u; OM)  (2n).
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Module et argument
Forme trigonométrique

Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Le plan complexe est muni d’un repere orthonormé direct

Soit z un nombre complexe et M son image dans le plan
complexe.

Le module de z, noté |z|, est la distance OM : |z| = OM.

Si z est non nul, on appelle argument de_z), noté arg(z), toute

mesure en radian de I'angle orienté (U; OM) :
—
arg(z) = (u; OM)  (2n).

V.B.J.D.S.B. Diaporama du cours



Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Exemples

li|=... arg(i)=... (2m)
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Exemples

if=1 " arg() =7 (2m)
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Forme trigonométrique
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Forme trigonométrique d’un nombre complexe Propriétés

Exemples

if=1 arg(i) =

T
2

| -3 =... arg(=3)=... (2m)
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Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zz=...............
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Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zz = & + b? = |z|?




Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zz = & + b? = |z|?

e Pour tout nombre complexe z, | —z| =.........
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zz = & + b? = |z|?

e Pour tout nombre complexe z, | — z| = |z| = |z|.
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zz = & + b? = |z|?
e Pour tout nombre complexe z, | — z| = |Z| = |z|.

e Pour tout nombre complexe non nul z :
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zz = & + b? = |z|?
e Pour tout nombre complexe z, | — z| = |Z| = |z|.

e Pour tout nombre complexe non nul z :

arg(—z) = arg(z) + m (2n)
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Propriétés
e Pour tout nombre complexe z, zz = & + b? = |z|?
e Pour tout nombre complexe z, | — z| = |Z| = |z|.
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arg(—z) =arg(z) + m (2n)
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zz = & + b? = |z|?
e Pour tout nombre complexe z, | — z| = |Z| = |z|.

e Pour tout nombre complexe non nul z :

arg(—z) =arg(z) + m (2n)

arg(2) = —arg(2) (2r)
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zz = & + b? = |z|?
e Pour tout nombre complexe z, | — z| = |Z| = |z|.

e Pour tout nombre complexe non nul z :

arg(—z) =arg(z) + m (2n)

arg(2) = —arg(2) (2n)

e zestunréel, (z+#0),sietseulementsi...............
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zz = & + b? = |z|?
e Pour tout nombre complexe z, | — z| = |Z| = |z|.

e Pour tout nombre complexe non nul z :

arg(—z) =arg(z) + m (2n)

arg(2) = —arg(2) (2n)

e Zzestunréel, (z#0),sietseulementsiarg(z) =0 (7).
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Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zz = & + b? = |z|?

Pour tout nombre complexe z, | — z| = [Z| = |Z|.

e Pour tout nombre complexe non nul z :

arg(—z) =arg(z) + m (2n)

arg(2) = —arg(2) (2n)

e ~zestunréel, (z#0),sietseulementsiarg(z) =0 (7).

e zestunimaginaire pur, (z # 0), si et seulement si
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Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zZ = & + b? = |z|?

Pour tout nombre complexe z, | — z| = |Z| = |z|.

e Pour tout nombre complexe non nul z :

arg(—z) = arg(z) +© (2m)

arg(z) = —arg(2) (2m)

e Zzestunréel, (z+#0), sietseulementsiarg(z)=0 (n).

e zestunimaginaire pur, (z # 0), si et seulement si
arg(z) =3 (m).
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Forme trigonométrique d’un nombre complexe Propriétés

Propriétés
e Pour tout nombre complexe z, zZ = & + b? = |z|?

Pour tout nombre complexe z, | — z| = |Z| = |z|.

e Pour tout nombre complexe non nul z :

arg(—z) = arg(z) +© (2m)

arg(z) = —arg(2) (2m)

e Zzestunréel, (z+#0), sietseulementsiarg(z)=0 (n).

e zestunimaginaire pur, (z # 0), si et seulement si
arg(z) =3 (m).
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Forme trigonométrique
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Forme trigonométrique d’un nombre complexe Propriétés

Définition

Tout nombre complexe non nul s’écrit sous la forme suivante,
dite.....................
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Définition

Tout nombre complexe non nul s’écrit sous la forme suivante,
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Définition

Tout nombre complexe non nul s’écrit sous la forme suivante,
dite forme trigonométrique :

Z =r(cosf + isinf) avec r=|z| et § =arg(z) (2m)
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a+ bi, avec z # 0,
alors sa forme trigonomeétrique est : z = r(cosé + isinf) avec
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a+ bi, avec z # 0,
alors sa forme trigonomeétrique est : z = r(cosé + isinf) avec

r=va+b?
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Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a+ bi, avec z # 0,
alors sa forme trigonomeétrique est : z = r(cosé + isinf) avec
r=va®+b® etftelquecosf =...............
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Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a+ bi, avec z # 0,
alors sa forme trigonométrique est : z = r(cosé + isinf) avec

a a
r=vat+b® etftelquecosf = —= ——
q ro va?+b?
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Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a+ bi, avec z # 0,
alors sa forme trigonométrique est : z = r(cosé + isinf) avec

a a
r=vat+b® etftelquecosd = —= —— et
q ro va’+p?
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a—+ bi, avec z # 0,
alors sa forme trigonomeétrique est : z = r(cosé + isinf) avec

a a
r=vat+b® etftelquecos = —= —— et
q ro va+p?

) b b
sinf = — =

rV@ TR
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a—+ bi, avec z # 0,
alors sa forme trigonomeétrique est : z = r(cosé + isinf) avec

a a
r=+va?+b? etftelque cos = - = —— et
q ro va?+b?
g b b
sinfl = — = —————.
ro va+b?

e Sila forme trigonométrique de z est z = r(cos + isinf),
alors sa forme algébrique est: z=a+ bi aveca=......
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a—+ bi, avec z # 0,
alors sa forme trigonomeétrique est : z = r(cosé + isinf) avec

a a
r=+va?+b? etftelque cos = - = —— et
q ro va?+b?
g b b
sinfl = — = —————.
ro va+b?

e Sila forme trigonométrique de z est z = r(cos + isinf),
alors sa forme algébrique est: z=a+ bi avec a= rcosf
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a—+ bi, avec z # 0,
alors sa forme trigonomeétrique est : z = r(cosé + isinf) avec

a a
r=+va?+b? etftelque cos = - = —— et
q ro va?+b?
g b b
sinfl = — = —————.
ro va+b?

e Sila forme trigonométrique de z est z = r(cos + isinf),
alors sa forme algébrique est: z= a+ bi avec a = rcosf et
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Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a—+ bi, avec z # 0,
alors sa forme trigonomeétrique est : z = r(cosé + isinf) avec

a a
r=+va?+b? etftelque cos = - = —— et
q ro va?+b?
g b b
sinfl = — = —————.
ro va+b?

e Sila forme trigonométrique de z est z = r(cos + isinf),
alors sa forme algébrique est: z= a+ bi avec a = rcosf et
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

e Silaforme algébrique de z est z = a—+ bi, avec z # 0,
alors sa forme trigonomeétrique est : z = r(cosé + isinf) avec

a a
r=+va?+b? etftelque cos = - = —— et
q ro va?+b?
g b b
sinfl = — = —————.
ro va+b?

e Sila forme trigonométrique de z est z = r(cos + isinf),
alors sa forme algébrique est: z= a+ bi avec a = rcosf et
b =rsind.
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.

e Produit
Module : |z x Z/|=.........
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Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.

e Produit
Module : |z x Z/| = |z| x |Z|




Module et argument

Forme trigonométrique

Passage d’'une forme a l'autre
Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.
e Produit

Module : |z x Z/| = |z| x |Z|
Argument :arg(zZ') = ............... (2m)
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Module et argument

Forme trigonométrique

Passage d’'une forme a l'autre
Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.
e Produit

Module : |z x Z'| = |z| x |Z/|
Argument : arg(zZ') = arg(z) + arg(2’) (2n)
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.
e Produit
Module : |z x Z/| = |z| x |Z|

Argument : arg(zZ') = arg(z) + arg(2’) (2n)

e Puissance
Module : |z2"] = ...
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Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.
e Produit
Module : |z x Z/| = |z| x |Z|

Argument : arg(zZ') = arg(z) + arg(2’) (2n)

e Puissance
Module : |Z2"] = |z|"
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.
e Produit
Module : |z x Z/| = |z| x |Z|

Argument : arg(zZ') = arg(z) + arg(2’) (2n)

e Puissance
Module : |2"| = |z|" Argument :arg(z") =......... (27)
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Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.
e Produit
Module : |z x Z/| = |z| x |Z|

Argument : arg(zZ') = arg(z) + arg(2’) (2n)

e Puissance
Module : |2"] = |z|" Argument : arg(z") = narg(z) (2n)
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Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.
e Produit
Module : |z x Z/| = |z| x |Z|

Argument : arg(zZ') = arg(z) + arg(2’) (2n)

e Puissance
Module : |2"] = |z|" Argument : arg(z") = n arg(z) (2n)

e Inverse
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.

e Produit
Module : |z x Z/| = |z| x |Z|
Argument : arg(zZ') = arg(z) + arg(2’) (2n)

e Puissance
Module : |2"] = |z|" Argument : arg(z") = n arg(z) (2n)

e Inverse

1 1
Module : |—| = —
z ||
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Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.

e Produit
Module : |z x Z/| = |z| x |Z|
Argument : arg(zZ') = arg(z) + arg(2’) (2n)

e Puissance
Module : |2"] = |z|" Argument : arg(z") = n arg(z) (2n)

e Inverse

1 1 1
Module : 'z| = ] Argument : arg(E) =...... (2n)

V.B.J.D.S.B. Diaporama du cours



Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

On considere z # 0 et 2’ # 0.

e Produit
Module : |z x Z/| = |z| x |Z|
Argument : arg(zZ') = arg(z) + arg(2’) (2n)

e Puissance
Module : |2"] = |z|" Argument : arg(z") = n arg(z) (2n)

e Inverse
1 1 1
Module : 'z| = — Argument : arg(E) = —arg(z) (2n)

2]
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On considere z # 0 et 2’ # 0.

e Produit
Module : |z x Z/| = |z| x |Z|
Argument : arg(zZ') = arg(z) + arg(2’) (2n)

e Puissance
Module : |2"] = |z|" Argument : arg(z") = n arg(z) (2n)

e Inverse
1 1 1
Module : 'z| = — Argument : arg(E) = —arg(z) (2n)

2]
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Forme trigonométrique
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Forme trigonométrique d’un nombre complexe Propriétés

e Quotient

z
Module : —l=-
z
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Forme trigonométrique d’un nombre complexe Propriétés

e Quotient

Module :

_ 12l

ZI 12|




Forme trigonométrique d’'un nombre complexe

e Quotient

Module : |—| =
z' |Z]

z
Argument : arg(?)

Module et argument

Forme trigonométrique
Passage d’'une forme a l'autre
Propriétés



Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

e Quotient

Module :

Z' 12|

z
Argument : arg(?) = arg(z) —arg(Z') (2m)




Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

e Quotient

Module :

Z' 12|
z
Argument : arg(?) = arg(z) —arg(Z') (2m)

e Somme
Inégalité triangulaire : |z+ Z'| < .........
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Module :

Z' 12|
z
Argument : arg(?) = arg(z) —arg(Z') (2m)
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e Quotient

Module :

Z' 12|
z
Argument : arg(?) = arg(z) —arg(Z') (2m)

e Somme
Inégalité triangulaire : |z + Z/| < |z| + |Z/|
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

o Géomeétrie
Soient A, B et C trois points distincts du plan complexe,
d’affixes respectives z4, zg et z¢.

|25 — za) = AB et arg(zg — za) = (U; AB) (2r)

ZB— Z¢

~ OB ot o (ZB_ZC> _ (CA:CB) (2n)

za—2zc| CA Zp— Z¢
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Par conséquent, les points A, B et C sont alignés si et

seulementsi .......... L.
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Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Par conséquent, les points A, B et C sont alignés si et

. ZB— Z¢c
seulementsiarg | —— | =0 (m)
Zp— Z¢

V.B.J.D.S.B. Diaporama du cours
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Par conséquent, les points A, B et C sont alignés si et

. Zp — Z¢
seulementsiarg | —— | =0 (m)
Zp— Z¢

et les droites (BC) et (AC) sont perpendiculaires si et

seulementsSi.......ooiiiiiii..
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Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Par conséquent, les points A, B et C sont alignés si et

. Zp — Z¢
seulementsiarg | —— | =0 (m)
Zp — Z¢

et les droites (BC) et (AC) sont perpendiculaires si et

. Zg — Z¢ s
seulementsiarg | ——— | = 5 (m)
Za— Z¢ 2
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Module et argument
Forme trigonométrique
Passage d’'une forme a l'autre

Forme trigonométrique d’un nombre complexe Propriétés

Par conséquent, les points A, B et C sont alignés si et

. Zp — Z¢
seulementsiarg | —— | =0 (m)
Zp — Z¢

et les droites (BC) et (AC) sont perpendiculaires si et

. Zg — Z¢ s
seulementsiarg | —— | = 5 (7m)
Za— Z¢ 2
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Notation exponentielle
Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

Tout nombre complexe de module 1 s’écrit z = cos + isin 6
avec 0 = arg(z) (2w).

On note f la fonction qui a tout réel 6 associe le nombre
complexe f() = cosf + isiné.

On se propose de démontrer que pour tous réels 6 et ¢/,
f(6+06)=1(0) = f(¢)etf(0)=1.
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Notation exponentielle et applications.

f(0) x f(6') = [cos B + isinf] x [cos b + isinf]
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Notation exponentielle et applications.

f(0) x f(6') = [cos B + isinf] x [cos b + isinf]




Notation exponentielle

Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

f(0) x f(6') = [cos B + isinf] x [cos b + isinf]
[cos O cos @' — sin B sin 0] + i[cos O sin 6" + cos ' sin 6]




Notation exponentielle

Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

f(0) x f(6') = [cos B + isinf] x [cos b + isinf]
[cos O cos @' — sinBsin 0] + i[cos O sin 6 + cos ' sin 6]
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Notation exponentielle
Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

f(0) x f(6') = [cos B + isinf] x [cos b + isinf]
= [cosf cos @' — sinBsin '] + i[cos O sin 6" + cos ' sin 6]

Soit : f(0) x f(0') = cos(§ +0) + isin(0+0") = f(6 +6')
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Notation exponentielle

Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

f(0) x f(6') = [cos B + isinf] x [cos b + isinf]
= [cosf cos @' — sinBsin '] + i[cos O sin 6" + cos ' sin 6]

Soit : f(0) x f(0') = cos(§ +6') + isin(0+0") = f(6 +6)

Deplus, f(0)=..................
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Notation exponentielle

Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

f(0) x f(6') = [cos B + isinf] x [cos b + isinf]
= [cosf cos @' — sinBsin '] + i[cos O sin 6" + cos ' sin 6]

Soit : f(0) x f(0') = cos(§ +6') + isin(0+0") = f(6 +6)

De plus, f(0) = cos0 + isin0 = 1
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Notation exponentielle

Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

f(0) x f(6') = [cos B + isinf] x [cos b + isinf]
= [cosf cos @' — sinBsin '] + i[cos O sin 6" + cos ' sin 6]

Soit : f(0) x f(0') = cos(§ +6') + isin(0+0") = f(6 +6)

De plus, f(0) = cos0+ isin0 =1
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Notation exponentielle
Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

Ainsi, comme la fonction exponentielle, f « transforme les
sommes en produits » et f(0) = 1.

D'ou lidée deposer..................
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Applications en trigonométrie

Notation exponentielle et applications.

Ainsi, comme la fonction exponentielle, f « transforme les
sommes en produits » et f(0) = 1.

D’ou I'idée de poser e = cos 6 + isinf.
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Notation exponentielle et applications.

Ainsi, comme la fonction exponentielle, f « transforme les
sommes en produits » et f(0) = 1.

D’ou I'idée de poser e = cos 6 + isin 6.

Légalité f(6 + 6') = f(0) x f(#") démontrée s’écrit alors
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Notation exponentielle
Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

Ainsi, comme la fonction exponentielle, f « transforme les
sommes en produits » et f(0) = 1.

D’ou I'idée de poser e = cos 6 + isin 6.

Légalité f(6 + ¢')

= f(0) x f(#") démontrée s’écrit alors
elf % e/H (9+6 )

V.B.J.D.S.B. Diaporama du cours



Notation exponentielle
Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

Ainsi, comme la fonction exponentielle, f « transforme les
sommes en produits » et f(0) = 1.

D’ou I'idée de poser e = cos 6 + isin 6.

Légalité f(0 + 0") = f(0) x f(¢') démontrée s’écrit alors
e? x el = gi(0+%) ce qui justifie cette notation exponentielle.
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Notation exponentielle
Propriétés

Applications en trigonométrie

Notation exponentielle et applications.

Définition

Le complexe de module 1 dont un argument est 6 est noté e’
avec :
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Notation exponentielle et applications.

Définition

Le complexe de module 1 dont un argument est 6 est noté e’

avec .
i0

e =cosfh +isinf
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Notation exponentielle et applications.

Définition

Le complexe de module 1 dont un argument est 6 est noté e’

avec .
i

e =cosfh + isinf
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Notation exponentielle et applications.

Exemples
el = ...
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Notation exponentielle et applications.

Exemples
e'm = —1




Notation exponentielle
Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

Exemples
em=-1; ez=...
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Notation exponentielle et applications.

Exemples
eiﬂ ——1: ¢

NN
I
-
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Propriétés
Applications en trigonométrie

Notation exponentielle et applications.

Exemples
em =—1:

ms.
NN
I
-

Notation exponentielle de la forme trigonométrique

Tout nombre complexe non nul de module r et d’argument
6 s’écrit sous la forme suivante, dite .....................
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Notation exponentielle et applications.

Exemples
em =—1:

ms.
NN
I
-

Notation exponentielle de la forme trigonométrique

Tout nombre complexe non nul de module r et d’argument
0 s’écrit sous la forme suivante, dite notation exponen-
tielle :
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Notation exponentielle et applications.

Exemples
em =—1:

ms.
NN
I
-

Notation exponentielle de la forme trigonométrique

Tout nombre complexe non nul de module r et d’argument
0 s’écrit sous la forme suivante, dite notation exponen-
tielle :

z=re® avec r=|z| etf=arg(z) (2n)
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Notation exponentielle et applications.

Pour tout réels 6 et ¢’ :
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Notation exponentielle et applications.

Pour tout réels 6 et ¢’ :

10 — cosf — isinf

e
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Notation exponentielle et applications.

Pour tout réels 6 et ¢’ :

10 — cosf — isinf

e
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Notation exponentielle et applications.

Pour tout réels 6 et ¢’ :

e "% = cos® —isinf

. . . , o\ N .
el « ot — gi(0+0) (e’9> — gin?




Notation exponentielle
Propriétés
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Notation exponentielle et applications.

Pour tout réels 6 et ¢’ :

e = cosh —isinf
el « ot — gi(0+0) (ele) eint
1 et
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Notation exponentielle
Propriétés

Applications en trigonométrie

Notation exponentielle et applications.

Pour tout réels 6 et ¢’ :

e % = cosf — isinf
el « ot — gi(0+0) (ele) eint
i0
L@ _ o0 _ gt S =l
e/ e/
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Notation exponentielle
Propriétés

Applications en trigonométrie

Notation exponentielle et applications.

Pour tout réels 0 et ¢’ :
e = cosh —isinf
el « ot — gi(0+0) (ele) eint
1 e e _ gie-0)
el@ el@’
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Notation exponentielle
Propriétés

Applications en trigonométrie

Notation exponentielle et applications.

A I'aide de ces formules, on retrouve les formules d’addition et
de duplication vues en Premiére en écrivant les membres de
gauche et de droite sous forme trigonométrique :

Par exemple :

el(6=0") — gl  e=10" g'écrit :
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Notation exponentielle et applications.

A I'aide de ces formules, on retrouve les formules d’addition et
de duplication vues en Premiére en écrivant les membres de
gauche et de droite sous forme trigonométrique :

Par exemple :

el0=0") — gif x =" gécrit :
cos(6 — ")+ isin(0 — ') = [cos @ + isinf] x [cos§ — isinf]
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Notation exponentielle et applications.

A I'aide de ces formules, on retrouve les formules d’addition et
de duplication vues en Premiére en écrivant les membres de
gauche et de droite sous forme trigonométrique :

Par exemple : '
e(0=0") — e/ x e~ gécrit :
cos(6 — ')+ isin(0 — ') = [cos @ + isinf] x [cos& — isinf]
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Notation exponentielle
Propriétés

Applications en trigonométrie

Notation exponentielle et applications.

A I'aide de ces formules, on retrouve les formules d’addition et
de duplication vues en Premiére en écrivant les membres de
gauche et de droite sous forme trigonométrique :

Par exemple :
e/(0=0) = i x =10" g'écrit :
cos(6 — ')+ isin(0 — ') = [cos @ + isinf] x [cos& — isinf]
= cosfcos) — jcosfsinf + isinfcost + sinfsinb’
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Notation exponentielle
Propriétés

Applications en trigonométrie

Notation exponentielle et applications.

A I'aide de ces formules, on retrouve les formules d’addition et
de duplication vues en Premiére en écrivant les membres de
gauche et de droite sous forme trigonométrique :

Par exemple :
e/0-0) = g/ x =0" gécrit :
cos(6 — ')+ isin(0 — ') = [cos @ + isinf] x [cos& — isinf]
= cosfcos® — icosBsinf + isinfcost + sinfsinb
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Notation exponentielle
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Applications en trigonométrie

Notation exponentielle et applications.

A l'aide de ces formules, on retrouve les formules d’addition et
de duplication vues en Premiére en écrivant les membres de
gauche et de droite sous forme trigonométrique :

Par exemple :

e0-0) = e/ x e~ gécrit :

cos(f — 0") +isin(0 — 0') = [cos B + isinf] x [cos® — isin¢]
= cosfcosf — icosfsinf + isinfcosh + sinfsinb’
= [cos 6 cos B + sin Osin 0] + i[sin 6 cos @' — cos G sin §']
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Notation exponentielle et applications.

A l'aide de ces formules, on retrouve les formules d’addition et
de duplication vues en Premiére en écrivant les membres de
gauche et de droite sous forme trigonométrique :

Par exemple :

e0-0) = e/ x e~ gécrit :

cos(f — 0") +isin(0 — 0') = [cos B + isinf] x [cos® — isin¢]
= cosfcosf — icosfsinf + isinfcosh + sinfsinb’
= [cos 6 cos @' + sin Osin 0] + i[sin 6 cos @' — cos 6 sin §']
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Notation exponentielle et applications.

Ainsi on retrouve bien :
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Notation exponentielle et applications.

Ainsi on retrouve bien :
cos(6 — ') = cos B cos) + sinfsin’
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Notation exponentielle et applications.

Ainsi on retrouve bien :
cos(6 — ') = cosfcos@ +sinfsinf et
sin(0—6')= ...
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Notation exponentielle et applications.

Ainsi on retrouve bien :
cos(6 — ') = cosfcos@ +sinfsinf et
sin(0 — 0") = sinf cosf’ — cosBOsin b’
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Applications en trigonométrie

Notation exponentielle et applications.

Ainsi on retrouve bien :
cos(6 — ') = cosfcos@ +sinfsinf et
sin(f —0') = sinf cos ' — cosfsinb’
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Notation exponentielle et applications.

Autre exemple :
el(6+0) — g2i0 — gt » oif g'écrit :
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Notation exponentielle et applications.

Autre exemple :
e/(0+0) — g20 — ¢i? x e/ g'écrit :
cos(26) + isin(20) = (cos 6 + isin 0)?
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Notation exponentielle et applications.

Autre exemple :
e/(0+0) — g20 — ¢i? x e/ g'écrit :
cos(26) + isin(20) = (cos 6 + isin 6)?
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Applications en trigonométrie

Notation exponentielle et applications.

Autre exemple :
e/(0+0) — g20 — ¢i? x e/ g'écrit :
cos(20) + isin(20) = (cos + isin 9)2
= cos2f) + 2icosfsinf —sin? 0
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Notation exponentielle et applications.

Autre exemple :
e/(0+0) — g20 — ¢i? x e/ g'écrit :
cos(20) + isin(20) = (cos + isin 9)2
= cos2f + 2icosfsinf —sin? 0
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Notation exponentielle et applications.

Autre exemple :

e/(0+0) — 210 — i0 » g0 gécrit :

cos(26) + isin(20) = (cos 6 + isin 6)?
= c0s? 0 + 2i cos A sin f — sin®f
= cos? f — sin? @ + i(2sin A cos 0)
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Notation exponentielle et applications.

Autre exemple :

e/(0+0) — 210 — i0 » g0 gécrit :

cos(26) + isin(20) = (cos 6 + isin 6)?
= c0s? 0 + 2i cos A sin f — sin®f
= cos? f — sin @ + i(2sin A cos 0)

Ainsi on retrouve bien :
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Notation exponentielle et applications.

Autre exemple :

e/(0+0) — 210 — i0 » g0 gécrit :

cos(26) + isin(20) = (cos 6 + isin 6)?
= c0s? 0 + 2i cos A sin f — sin®f
= cos? f — sin @ + i(2sin A cos 0)

Ainsi on retrouve bien :
cos(26) = cos® # — sin? §
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Notation exponentielle et applications.

Autre exemple :

e/(0+0) — 210 — i0 » g0 gécrit :

cos(26) + isin(20) = (cos 6 + isin 6)?
= c0s? 0 + 2i cos A sin f — sin®f
= cos? f — sin @ + i(2sin A cos 0)

Ainsi on retrouve bien :
cos(20) = cos?f —sinf et sin(20) =............
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Notation exponentielle et applications.

Autre exemple :

e/(0+0) — 210 — i0 » g0 gécrit :

cos(26) + isin(20) = (cos 6 + isin 6)?
= c0s? 0 + 2i cos A sin f — sin®f
= cos? f — sin @ + i(2sin A cos 0)

Ainsi on retrouve bien :
cos(20) = cos? f —sin?f et sin(20) = 2sinf cosf
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Notation exponentielle et applications.

Autre exemple :

e/(0+0) — 210 — i0 » g0 gécrit :

cos(26) + isin(20) = (cos 6 + isin 6)?
= c0s? 0 + 2i cos A sin f — sin®f
= cos? f — sin @ + i(2sin A cos 0)

Ainsi on retrouve bien :
cos(20) = cos? # —sin?f et sin(20) = 2sinf cosf
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