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• identités remarquables : elles restent valables dans R, en
particulier :

(a + bi)(a− bi) = . . . . . . . . .

• inverse : si z 6= 0,
1
z
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Conséquence :
si z = a + bi , alors z + z = 2a et z − z = 2bi , d’où :
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Il en résulte que :
- "Le nombre complexe z est réel" équivaut à "z = . . .".
- "Le nombre complexe z est imaginaire pur" équivaut à
"z + z = . . .".
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z + z ′ = . . . . . .

. zz ′ = . . . . . . . zn = . . . . . .
pour tout naturel n.

si z ′ 6= 0 :
( 1

z′

)
= . . .. et

( z
z′

)
= . . ..

Remarque

z = . . . zz = . . . . . .
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Théorème

Dans C, l’équation az2 + bz + c = 0, a 6= 0, a, b, c réels,
a toujours des solutions.

On note ∆ le discriminant de cette équation :

∆ = b2 − 4ac

• si ∆ > 0, l’équation a deux solutions réelles :

z1 = . . . . . . . . . . . . et z2 = . . . . . . . . . . . .
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• si ∆ = 0, l’équation a une solution double réelle :

z1 = z2 = . . . . . .

• si ∆ < 0, l’équation a deux solutions complexes conju-
guées :

z1 = . . . . . . . . . . . . et z2 = . . . . . . . . . . . . avec z2 = . . .
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Conséquence
Dans C, le trinôme az2 + bz + c se factorise toujours sous la
forme : az2 + bz + c = a(z − z1)(z − z2).
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Démonstration
On écrit le trinôme az2 + bz + c sous la forme canonique :

az2 + bz + c = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Puisque a 6= 0, résoudre dans C l’équation az2 + bz + c = 0,
c’est résoudre l’équation

. . . . . . . . . . . . . . . . . . . . . . . .
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• si ∆ > 0 ou si ∆ = 0, on sait que l’équation a deux solutions
dans R et deux seulement (distinctes ou égales). Elle a donc
deux solutions complexes et deux seulement puisque R est
inclus dans C.
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• si ∆ < 0, alors
√
−∆ existe et avec i2 = −1, on a

. . . . . . . . . . . .

Donc :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ainsi l’équation a deux solutions :

z1 = . . . . . . . . . . . . . . . et z2 = . . . . . . . . . . . . . . . avec z2 = z1.
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Exemple :
Résoudre dans l’équation : 4z2 − 12z + 153 = 0

On calcule le discriminant :
∆ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L’équation admet deux solutions complexes conjuguées :

z1 = . . . . . . . . . . . . . . . . . . et z2 = . . . . . . . . . . . . . . . . . .

S = . . . . . . . . . . . . . . .
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Définition
Remarques
Propriétés

Dans le plan muni d’un repère orthonormé direct (O;
→
u ,
→
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→
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→
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:
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Soient A, B et C trois points distincts du plan complexe,
d’affixes respectives zA, zB et zC .

|zB − zA| = AB et arg(zB − zA) = (
→
u ;
−→
AB) (2π)

∣∣∣∣zB − zC

zA − zC

∣∣∣∣ =
CB
CA

et arg

(
zB − zC

zA − zC

)
= (
−→
CA;

−→
CB) (2π)
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Forme trigonométrique d’un nombre complexe
Notation exponentielle et applications.

Notation exponentielle
Propriétés
Applications en trigonométrie

Tout nombre complexe de module 1 s’écrit z = cos θ + i sin θ
avec θ = arg(z) (2π).

On note f la fonction qui à tout réel θ associe le nombre
complexe f (θ) = cos θ + i sin θ.
On se propose de démontrer que pour tous réels θ et θ′,
f (θ + θ′) = f (θ)× f (θ′) et f (0) = 1.
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Ainsi, comme la fonction exponentielle, f « transforme les
sommes en produits » et f (0) = 1.

D’où l’idée de poser . . . . . . . . . . . . . . . . . .

L’égalité f (θ + θ′) = f (θ)× f (θ′) démontrée s’écrit alors
. . . . . . . . . . . . . . . . . . . . . ce qui justifie cette notation exponentielle.
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Définition

Le complexe de module 1 dont un argument est θ est noté eiθ

avec :
. . . . . . . . . . . . . . . . . .
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Exemples
eiπ = . . .

; ei π2 = . . .

Notation exponentielle de la forme trigonométrique

Tout nombre complexe non nul de module r et d’argument
θ s’écrit sous la forme suivante, dite . . . . . . . . . . . . . . . . . . . . .
. . . . . .

z = reiθ avec r = |z| et θ = arg(z) (2π)

V. B. J. D. S. B. Diaporama du cours



Les nombres complexes
Opérations sur les complexes

Equation du second degré à coefficients réels
Représentation géométrique d’un nombre complexe

Forme trigonométrique d’un nombre complexe
Notation exponentielle et applications.

Notation exponentielle
Propriétés
Applications en trigonométrie

Exemples
eiπ = −1

; ei π2 = . . .

Notation exponentielle de la forme trigonométrique

Tout nombre complexe non nul de module r et d’argument
θ s’écrit sous la forme suivante, dite . . . . . . . . . . . . . . . . . . . . .
. . . . . .

z = reiθ avec r = |z| et θ = arg(z) (2π)

V. B. J. D. S. B. Diaporama du cours



Les nombres complexes
Opérations sur les complexes

Equation du second degré à coefficients réels
Représentation géométrique d’un nombre complexe

Forme trigonométrique d’un nombre complexe
Notation exponentielle et applications.

Notation exponentielle
Propriétés
Applications en trigonométrie

Exemples
eiπ = −1 ; ei π2 = . . .

Notation exponentielle de la forme trigonométrique

Tout nombre complexe non nul de module r et d’argument
θ s’écrit sous la forme suivante, dite . . . . . . . . . . . . . . . . . . . . .
. . . . . .

z = reiθ avec r = |z| et θ = arg(z) (2π)

V. B. J. D. S. B. Diaporama du cours



Les nombres complexes
Opérations sur les complexes

Equation du second degré à coefficients réels
Représentation géométrique d’un nombre complexe

Forme trigonométrique d’un nombre complexe
Notation exponentielle et applications.

Notation exponentielle
Propriétés
Applications en trigonométrie

Exemples
eiπ = −1 ; ei π2 = i

Notation exponentielle de la forme trigonométrique

Tout nombre complexe non nul de module r et d’argument
θ s’écrit sous la forme suivante, dite . . . . . . . . . . . . . . . . . . . . .
. . . . . .

z = reiθ avec r = |z| et θ = arg(z) (2π)

V. B. J. D. S. B. Diaporama du cours



Les nombres complexes
Opérations sur les complexes

Equation du second degré à coefficients réels
Représentation géométrique d’un nombre complexe

Forme trigonométrique d’un nombre complexe
Notation exponentielle et applications.

Notation exponentielle
Propriétés
Applications en trigonométrie

Exemples
eiπ = −1 ; ei π2 = i

Notation exponentielle de la forme trigonométrique

Tout nombre complexe non nul de module r et d’argument
θ s’écrit sous la forme suivante, dite . . . . . . . . . . . . . . . . . . . . .
. . . . . .

z = reiθ avec r = |z| et θ = arg(z) (2π)

V. B. J. D. S. B. Diaporama du cours



Les nombres complexes
Opérations sur les complexes

Equation du second degré à coefficients réels
Représentation géométrique d’un nombre complexe

Forme trigonométrique d’un nombre complexe
Notation exponentielle et applications.

Notation exponentielle
Propriétés
Applications en trigonométrie

Exemples
eiπ = −1 ; ei π2 = i

Notation exponentielle de la forme trigonométrique

Tout nombre complexe non nul de module r et d’argument
θ s’écrit sous la forme suivante, dite notation exponen-
tielle :

z = reiθ avec r = |z| et θ = arg(z) (2π)

V. B. J. D. S. B. Diaporama du cours



Les nombres complexes
Opérations sur les complexes

Equation du second degré à coefficients réels
Représentation géométrique d’un nombre complexe

Forme trigonométrique d’un nombre complexe
Notation exponentielle et applications.

Notation exponentielle
Propriétés
Applications en trigonométrie

Exemples
eiπ = −1 ; ei π2 = i

Notation exponentielle de la forme trigonométrique

Tout nombre complexe non nul de module r et d’argument
θ s’écrit sous la forme suivante, dite notation exponen-
tielle :

z = reiθ avec r = |z| et θ = arg(z) (2π)

V. B. J. D. S. B. Diaporama du cours



Les nombres complexes
Opérations sur les complexes

Equation du second degré à coefficients réels
Représentation géométrique d’un nombre complexe

Forme trigonométrique d’un nombre complexe
Notation exponentielle et applications.

Notation exponentielle
Propriétés
Applications en trigonométrie

Pour tout réels θ et θ′ :

e−iθ = . . . . . . . . . . . .

eiθ × eiθ′ = . . . . . .
(

eiθ
)n

= . . . . . .

1
eiθ = . . . . . . . . . . . .

eiθ

eiθ′ = . . .
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A l’aide de ces formules, on retrouve les formules d’addition et
de duplication vues en Première en écrivant les membres de
gauche et de droite sous forme trigonométrique :

Par exemple :
ei(θ−θ′) = eiθ × e−iθ′ s’écrit :
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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A l’aide de ces formules, on retrouve les formules d’addition et
de duplication vues en Première en écrivant les membres de
gauche et de droite sous forme trigonométrique :

Par exemple :
ei(θ−θ′) = eiθ × e−iθ′ s’écrit :
cos(θ − θ′) + i sin(θ − θ′) = [cos θ + i sin θ]× [cos θ′ − i sin θ′]

= cos θ cos θ′ − i cos θ sin θ′ + i sin θ cos θ′ + sin θ sin θ′

= [cos θ cos θ′ + sin θ sin θ′] + i[sin θ cos θ′ − cos θ sin θ′]
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Ainsi on retrouve bien :
cos(θ − θ′) = . . . . . . . . . . . . . . . . . . . . .

et
sin(θ − θ′) = . . . . . . . . . . . . . . . . . . . . .
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Ainsi on retrouve bien :
cos(θ − θ′) = cos θ cos θ′ + sin θ sin θ′

et
sin(θ − θ′) = . . . . . . . . . . . . . . . . . . . . .
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Ainsi on retrouve bien :
cos(θ − θ′) = cos θ cos θ′ + sin θ sin θ′ et
sin(θ − θ′) = . . . . . . . . . . . . . . . . . . . . .
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Ainsi on retrouve bien :
cos(θ − θ′) = cos θ cos θ′ + sin θ sin θ′ et
sin(θ − θ′) = sin θ cos θ′ − cos θ sin θ′
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Ainsi on retrouve bien :
cos(θ − θ′) = cos θ cos θ′ + sin θ sin θ′ et
sin(θ − θ′) = sin θ cos θ′ − cos θ sin θ′
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Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ainsi on retrouve bien :
cos(2θ) = . . . . . . . . . . . . et sin(2θ) = . . . . . . . . . . . .
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Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ainsi on retrouve bien :
cos(2θ) = . . . . . . . . . . . . et sin(2θ) = . . . . . . . . . . . .
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Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ainsi on retrouve bien :
cos(2θ) = . . . . . . . . . . . . et sin(2θ) = . . . . . . . . . . . .
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Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= cos2 θ + 2i cos θ sin θ − sin2 θ

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ainsi on retrouve bien :
cos(2θ) = . . . . . . . . . . . . et sin(2θ) = . . . . . . . . . . . .
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Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= cos2 θ + 2i cos θ sin θ − sin2 θ
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ainsi on retrouve bien :
cos(2θ) = . . . . . . . . . . . . et sin(2θ) = . . . . . . . . . . . .

V. B. J. D. S. B. Diaporama du cours



Les nombres complexes
Opérations sur les complexes

Equation du second degré à coefficients réels
Représentation géométrique d’un nombre complexe

Forme trigonométrique d’un nombre complexe
Notation exponentielle et applications.

Notation exponentielle
Propriétés
Applications en trigonométrie

Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= cos2 θ + 2i cos θ sin θ − sin2 θ
= cos2 θ − sin2 θ + i(2 sin θ cos θ)

Ainsi on retrouve bien :
cos(2θ) = . . . . . . . . . . . . et sin(2θ) = . . . . . . . . . . . .
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Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= cos2 θ + 2i cos θ sin θ − sin2 θ
= cos2 θ − sin2 θ + i(2 sin θ cos θ)

Ainsi on retrouve bien :
cos(2θ) = . . . . . . . . . . . .

et sin(2θ) = . . . . . . . . . . . .
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Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= cos2 θ + 2i cos θ sin θ − sin2 θ
= cos2 θ − sin2 θ + i(2 sin θ cos θ)

Ainsi on retrouve bien :
cos(2θ) = cos2 θ − sin2 θ

et sin(2θ) = . . . . . . . . . . . .
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Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= cos2 θ + 2i cos θ sin θ − sin2 θ
= cos2 θ − sin2 θ + i(2 sin θ cos θ)

Ainsi on retrouve bien :
cos(2θ) = cos2 θ − sin2 θ et sin(2θ) = . . . . . . . . . . . .
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Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= cos2 θ + 2i cos θ sin θ − sin2 θ
= cos2 θ − sin2 θ + i(2 sin θ cos θ)

Ainsi on retrouve bien :
cos(2θ) = cos2 θ − sin2 θ et sin(2θ) = 2 sin θ cos θ
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Autre exemple :
ei(θ+θ) = e2iθ = eiθ × eiθ s’écrit :
cos(2θ) + i sin(2θ) = (cos θ + i sin θ)2

= cos2 θ + 2i cos θ sin θ − sin2 θ
= cos2 θ − sin2 θ + i(2 sin θ cos θ)

Ainsi on retrouve bien :
cos(2θ) = cos2 θ − sin2 θ et sin(2θ) = 2 sin θ cos θ
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