Informatique en PCSI

Informatique PCSI
Prérequis TP 8 : algorithmes de tri

Algorithmes de tri quadratiques

Tri par sélection

Le principe

On dispose de n données. On cherche la plus petite donnée et on la place en premiere position, puis
on cherche la plus petite donnée parmi les données restantes et on la place en deuxiéme position, et ainsi
de suite. Cet algorithme est souvent utilisé pour trier a la main des objets, comme des cartes ou des livres.

Si les données sont les éléments d’une liste 1iste, I’algorithme consiste donc a faire varier un indice
i de 0 an — 2. Pour chaque valeur de i, on cherche dans la tranche 1iste [i:n] le plus petit élément et
on I’échange avec 1iste [1i].On répete la recherche d’un minimum.

Ecrire un algorithme du tri sélection consiste 2 insérer dans une boucle, ot i varie de 0 & n — 2, un
algorithme de recherche du plus petit élément dans une liste, et pour chaque valeur de i a faire I’échange
de liste[i] avec liste[i_mini].

La donnée en entrée est une liste de n éléments. Il n’y a pas de résultat renvoyé en sortie, la liste est
modifiée en place. On dit que le tri sélection est un tri en place.

def tri_selection(liste):
for i in range(len(liste)-1):
i_mini = i # indice du minimum
mini = liste[i]
for j in range(i+l, len(liste)):
if liste[j] < mini:

i_mini = j
mini = liste[7j]
liste[i], liste[i_mini] = liste[i_mini], liste[i]

Exemple avec la liste [4, 4, 3, 2, 6, 5] etleséléments échangés.
PouriégalaO: [2, 4, 3, 4, 6, 5] apreséchange de?2 et4.
Pouriégalal: [2, 3, 4, 4, 6, 5] apreséchange de3et4.
Pouriégala2: [2, 3, 4, 4, 6, 5] apresaucun échange.
Pouriégala3d: [2, 3, 4, 4, 6, 5] apresaucun échange.
Pouriégalad: [2, 3, 4, 4, 5, 6] apreséchange de5 et6.

On remarque que le 4 qui était en début de liste se retrouve apres le 4 qui était en deuxieme position.
On dit que le tri sélection n’est pas stable.

Pour utiliser cette fonction il suffit d’écrire I’'instruction tri_selection (liste).

Si nous ne voulons pas modifier la liste passée en parameétre il faut en faire une copie et ensuite
appliquer 1’algorithme de tri a cette nouvelle liste qui est renvoyée 2 la fin.

Validité de I’algorithme
11 est intéressant de noter qu’apres k passages dans la boucle externe, les k£ premiers éléments de la
nouvelle liste sont a leur place définitive.
m Terminaison
La terminaison est simple a prouver. Nous avons deux boucles for imbriquées et le nombre de
passages dans ces deux boucles est parfaitement déterminé et il est évidemment fini.

Serge Bays 1 Lycée Les Eucalyptus



Informatique en PCSI

m Correction
Nous prouvons la correction en utilisant un invariant de boucle : "pour chaque 1, la liste est une
permutation de la liste initiale, la liste 1iste [0:1+1] est triée et tous les éléments de la liste
liste[i+1:n] sont supérieurs a tous les éléments de la liste Liste [0:1+1] ".
Pour chaque valeur de i, au plus une permutation de deux éléments distincts a lieu et elle a lieu
seulement si 1iste[i] n’est pas le minimum de 1iste[1i:n].C’est pourquoi apres chaque
passage dans la boucle externe, la nouvelle liste est une permutation de la liste initiale.
Apres le premier passage dans la boucle, pour i égal a0, laliste 1iste [0:1] ne contient qu'un
élément, le minimum de la liste, qui est inférieur a tous les éléments de la liste. La propriété est
donc vraie pour 1 égal a 0.
Si aprés un passage pour i égal a un k£ quelconque, la liste 1iste[0:k+1] est triée et tous
les éléments de 1iste [k+1:n] sont supérieurs a tous les éléments de 1iste[0:k+1], alors
au passage suivant le minimum de la liste 1iste [k+1:n] est placé en position d’indice k+1.
Ce minimum est supérieur a tous les éléments de la liste Liste [0:k+1] et inférieur a tous les
éléments de la liste 1iste [k+2:n].La propriété est donc vraie pour i égal a k + 1.

La propriété est donc encore vraie apres le dernier passage, pour i égal a n — 2. Donc la liste
liste[0:n-1] esttriée et I’élément d’indice n—1, le dernier de la liste, est supérieur a tous les
éléments de laliste 1iste[0:n—1].Donc laliste 1iste[0:n], soit toute la liste, est triée.

Coiit de I’algorithme

Quels que soient les éléments d’une liste de longueur n, pour chaque valeur de i, j prend les valeurs
de i+1 a n—1, soit n—i-1 valeurs. Et pour chaque valeur de j, une unique comparaison est effectuée.
Donc, pour chaque valeur de i, nous avons exactement n—i-1 comparaisons.

Au total, nous obtenons : (n-1)+ (n-2)+...4 2+ 1 comparaisons, soit n (n—1) /2 comparaisons.
Le cofit est donc de 1’ordre de n? quelle que soit la liste de longueur n, méme si elle est déja triée. Cela
signifie que le tri par sélection n’est pas tres efficace. Il est cependant simple a programmer et utile dans le
cas de listes ne comptant pas plus de 10* éléments.

Tri par insertion

Le principe

On dispose de n données. A chaque étape, on suppose que les k premieres données sont triées et on
insere une donnée supplémentaire a la bonne place parmi ces k£ données.

Si les données sont les éléments d’une liste, 1’algorithme consiste donc a faire varier un indice i de 0
an — 2. Pour chaque valeur de i, on cherche dans la liste 1iste [0:1+1] a quelle place doit étre inséré
I’élément 1iste[i+1] qu’on appelle la clé. Pour cela on compare la clé successivement aux données
précédentes, en commengant par la donnée d’indice i puis en remontant dans la liste jusqu’a trouver la
bonne place, c¢’est-a-dire entre deux données successives, 1’'une étant plus petite et I’autre plus grande que
la clé. Si la clé est plus petite que toutes les données précédentes, elle se place en premier. Pour ce faire,
on décale d’une place vers la droite les données plus grandes que la clé apres chaque comparaison.

La donnée en entrée est une liste de n éléments. Il n’y a pas de résultat renvoyé en sortie, la liste est
modifiée en place. On dit que le tri insertion est un tri en place.

def tri_insertion(liste):
for i in range(len(liste)-1):

k =1+ 1 # indice de la cle

cle = listelk]

while k > 0 and cle < listel[k-1]:
liste[k] = listel[k -1]
k =k -1

liste[k] = cle

Serge Bays 2 Lycée Les Eucalyptus



Informatique en PCSI

Exemple avec la liste [4, 4, 3, 2, 6, 5] etles clés successives.

Pour i égalaQ aveclaclé4: 1[4, 4, 3, 2, 6, 51.
Pour i égalal aveclaclé3: [3, 4, 4, 2, 6, 51.
Pour 1 égala2 aveclaclé2: [2, 3, 4, 4, 6, 5].
Pour i égala 3 aveclaclé6: [2, 3, 4, 4, 6, 51.
Pour i égala4 aveclaclé5: [2, 3, 4, 4, 5, 6]1.

Un examen approfondi de 1’algorithme montre que le tri insertion est stable. Deux éléments de méme
valeur placés dans un certain ordre avant le tri restent dans le méme ordre apres le tri.

Pour utiliser cette fonction il suffit d’écrire I’'instruction tri_insertion (liste).

Si nous ne voulons pas modifier la liste passée en parametre, il faut en faire une copie, trier cette
nouvelle liste et ensuite la renvoyer.

On peut noter ici qu’apres k passages dans la boucle, les k£ premiers éléments de la liste sont tri€s.
Mais ils ne sont pas, a priori, a leur place définitive.

Validité de I’algorithme
m Terminaison
La boucle externe est une boucle for donc le nombre de passages est déterminé et fini. La boucle
interne est une boucle while. Les valeurs prises par le variant k constituent une suite d’entiers
strictement décroissante incluse dans la suite des entiers de 1+1 a 0. Il y a donc, pour chaque 1,
au plus 1+1 passages dans la boucle while.

m Correction
Pour prouver la correction nous utilisons un invariant de boucle : "pour chaque i, la liste est une
permutation de la liste initiale et la liste 1iste [0:1i+2] est triée".
Le principe de I'insertion assure que pour chaque i, la liste modifiée est une permutation de la
liste initiale.
Apres le premier passage dans la boucle, pour 1 égala 0, 1’élément 1iste [0] etla premiere clé,
d’indice 1, sont rangés dans 1’ordre. Donc la liste 1iste [0:2] est triée. La propriété est donc
vraie pour i égal a 0.
Si apres un passage pour i égal a un k quelconque, la liste 1iste [0:k+2] est triée, alors au
passage suivant I’élément 1iste [k+2] est inséré a la bonne place parmi les éléments de la liste
liste[0:k+2] ou reste a sa place. Donc la liste 1iste[0:k+3] est triée. La propriété est
donc vraie pour i égala k + 1.

La propriété est donc encore vraie aprés le dernier passage, pour i égal A n — 2. A ce moment la
liste 1iste[0:n], c’est-a-dire la liste 1iste, est triée.

Coiit de I’algorithme

Nous avons deux boucles imbriquées. Pour une liste de longueur n, le nombre de comparaisons peut
étre différent suivant la liste.

Si la liste est déja triée, pour chaque valeur de i, k prend la valeur de i+1 et il y a une seule
comparaison, le test cle < liste[k-1].La variable i prenant n—1 valeurs, cela nous fait un total de
n-1 comparaisons. Le cofit de I’algorithme est donc de I’ordre de n.

Si par contre les éléments de la liste sont rangés dans 1’ordre décroissant, alors pour chaque valeur de
i, k prend les valeurs de i+1 a 1 soit 1+1 valeurs et donc i+1 comparaisons.

Au total, nous avons donc : 1 + 2 + ... + (n-2) + (n-1) comparaisons. Un calcul mathématique
nous donne n (n—-1) /2 comparaisons. Le cofit est donc de I’ordre de n? comparaisons.

On peut montrer qu’en moyenne, le coit est de I’ordre de n? comparaisons, comme pour le tri par
sélection. Mais le tri par insertion est tres intéressant si la liste est "presque triée".

Serge Bays 3 Lycée Les Eucalyptus



