
Informatique en PCSI

Informatique PCSI

Prérequis TP 8 : algorithmes de tri

Algorithmes de tri quadratiques

Tri par sélection

Le principe

On dispose de n données. On cherche la plus petite donnée et on la place en première position, puis
on cherche la plus petite donnée parmi les données restantes et on la place en deuxième position, et ainsi
de suite. Cet algorithme est souvent utilisé pour trier à la main des objets, comme des cartes ou des livres.

Si les données sont les éléments d’une liste liste, l’algorithme consiste donc à faire varier un indice
i de 0 à n− 2. Pour chaque valeur de i, on cherche dans la tranche liste[i:n] le plus petit élément et
on l’échange avec liste[i]. On répète la recherche d’un minimum.

Écrire un algorithme du tri sélection consiste à insérer dans une boucle, où i varie de 0 à n − 2, un
algorithme de recherche du plus petit élément dans une liste, et pour chaque valeur de i à faire l’échange
de liste[i] avec liste[i_mini].

La donnée en entrée est une liste de n éléments. Il n’y a pas de résultat renvoyé en sortie, la liste est
modifiée en place. On dit que le tri sélection est un tri en place.

def tri_selection(liste):

for i in range(len(liste)-1):

i_mini = i # indice du minimum

mini = liste[i]

for j in range(i+1, len(liste)):

if liste[j] < mini:

i_mini = j

mini = liste[j]

liste[i], liste[i_mini] = liste[i_mini], liste[i]

Exemple avec la liste [4, 4, 3, 2, 6, 5] et les éléments échangés.

Pour i égal à 0 : [2, 4, 3, 4, 6, 5] après échange de 2 et 4.
Pour i égal à 1 : [2, 3, 4, 4, 6, 5] après échange de 3 et 4.
Pour i égal à 2 : [2, 3, 4, 4, 6, 5] après aucun échange.
Pour i égal à 3 : [2, 3, 4, 4, 6, 5] après aucun échange.
Pour i égal à 4 : [2, 3, 4, 4, 5, 6] après échange de 5 et 6.

On remarque que le 4 qui était en début de liste se retrouve après le 4 qui était en deuxième position.
On dit que le tri sélection n’est pas stable.

Pour utiliser cette fonction il suffit d’écrire l’instruction tri_selection(liste).
Si nous ne voulons pas modifier la liste passée en paramètre il faut en faire une copie et ensuite

appliquer l’algorithme de tri à cette nouvelle liste qui est renvoyée à la fin.

Validité de l’algorithme

Il est intéressant de noter qu’après k passages dans la boucle externe, les k premiers éléments de la
nouvelle liste sont à leur place définitive.

� Terminaison

La terminaison est simple à prouver. Nous avons deux boucles for imbriquées et le nombre de
passages dans ces deux boucles est parfaitement déterminé et il est évidemment fini.

Serge Bays 1 Lycée Les Eucalyptus



Informatique en PCSI

� Correction

Nous prouvons la correction en utilisant un invariant de boucle : "pour chaque i, la liste est une
permutation de la liste initiale, la liste liste[0:i+1] est triée et tous les éléments de la liste
liste[i+1:n] sont supérieurs à tous les éléments de la liste liste[0:i+1] ".
Pour chaque valeur de i, au plus une permutation de deux éléments distincts a lieu et elle a lieu
seulement si liste[i] n’est pas le minimum de liste[i:n]. C’est pourquoi après chaque
passage dans la boucle externe, la nouvelle liste est une permutation de la liste initiale.
Après le premier passage dans la boucle, pour i égal à 0, la liste liste[0:1] ne contient qu’un
élément, le minimum de la liste, qui est inférieur à tous les éléments de la liste. La propriété est
donc vraie pour i égal à 0.
Si après un passage pour i égal à un k quelconque, la liste liste[0:k+1] est triée et tous
les éléments de liste[k+1:n] sont supérieurs à tous les éléments de liste[0:k+1], alors
au passage suivant le minimum de la liste liste[k+1:n] est placé en position d’indice k+1.
Ce minimum est supérieur à tous les éléments de la liste liste[0:k+1] et inférieur à tous les
éléments de la liste liste[k+2:n]. La propriété est donc vraie pour i égal à k + 1.

La propriété est donc encore vraie après le dernier passage, pour i égal à n − 2. Donc la liste
liste[0:n-1] est triée et l’élément d’indice n-1, le dernier de la liste, est supérieur à tous les
éléments de la liste liste[0:n-1]. Donc la liste liste[0:n], soit toute la liste, est triée.

Coût de l’algorithme

Quels que soient les éléments d’une liste de longueur n, pour chaque valeur de i, j prend les valeurs
de i+1 à n-1, soit n-i-1 valeurs. Et pour chaque valeur de j, une unique comparaison est effectuée.
Donc, pour chaque valeur de i, nous avons exactement n-i-1 comparaisons.

Au total, nous obtenons : (n-1)+(n-2)+ . . .+2+1 comparaisons, soit n(n-1)/2 comparaisons.
Le coût est donc de l’ordre de n2 quelle que soit la liste de longueur n, même si elle est déjà triée. Cela
signifie que le tri par sélection n’est pas très efficace. Il est cependant simple à programmer et utile dans le
cas de listes ne comptant pas plus de 104 éléments.

Tri par insertion

Le principe

On dispose de n données. À chaque étape, on suppose que les k premières données sont triées et on
insère une donnée supplémentaire à la bonne place parmi ces k données.

Si les données sont les éléments d’une liste, l’algorithme consiste donc à faire varier un indice i de 0
à n− 2. Pour chaque valeur de i, on cherche dans la liste liste[0:i+1] à quelle place doit être inséré
l’élément liste[i+1] qu’on appelle la clé. Pour cela on compare la clé successivement aux données
précédentes, en commençant par la donnée d’indice i puis en remontant dans la liste jusqu’à trouver la
bonne place, c’est-à-dire entre deux données successives, l’une étant plus petite et l’autre plus grande que
la clé. Si la clé est plus petite que toutes les données précédentes, elle se place en premier. Pour ce faire,
on décale d’une place vers la droite les données plus grandes que la clé après chaque comparaison.

La donnée en entrée est une liste de n éléments. Il n’y a pas de résultat renvoyé en sortie, la liste est
modifiée en place. On dit que le tri insertion est un tri en place.

def tri_insertion(liste):

for i in range(len(liste)-1):

k = i + 1 # indice de la cle

cle = liste[k]

while k > 0 and cle < liste[k-1]:

liste[k] = liste[k -1]

k = k - 1

liste[k] = cle

Serge Bays 2 Lycée Les Eucalyptus



Informatique en PCSI

Exemple avec la liste [4, 4, 3, 2, 6, 5] et les clés successives.

Pour i égal à 0 avec la clé 4 : [4, 4, 3, 2, 6, 5].
Pour i égal à 1 avec la clé 3 : [3, 4, 4, 2, 6, 5].
Pour i égal à 2 avec la clé 2 : [2, 3, 4, 4, 6, 5].
Pour i égal à 3 avec la clé 6 : [2, 3, 4, 4, 6, 5].
Pour i égal à 4 avec la clé 5 : [2, 3, 4, 4, 5, 6].

Un examen approfondi de l’algorithme montre que le tri insertion est stable. Deux éléments de même
valeur placés dans un certain ordre avant le tri restent dans le même ordre après le tri.

Pour utiliser cette fonction il suffit d’écrire l’instruction tri_insertion(liste).
Si nous ne voulons pas modifier la liste passée en paramètre, il faut en faire une copie, trier cette

nouvelle liste et ensuite la renvoyer.

On peut noter ici qu’après k passages dans la boucle, les k premiers éléments de la liste sont triés.
Mais ils ne sont pas, à priori, à leur place définitive.

Validité de l’algorithme

� Terminaison

La boucle externe est une boucle for donc le nombre de passages est déterminé et fini. La boucle
interne est une boucle while. Les valeurs prises par le variant k constituent une suite d’entiers
strictement décroissante incluse dans la suite des entiers de i+1 à 0. Il y a donc, pour chaque i,
au plus i+1 passages dans la boucle while.

� Correction

Pour prouver la correction nous utilisons un invariant de boucle : "pour chaque i, la liste est une
permutation de la liste initiale et la liste liste[0:i+2] est triée".
Le principe de l’insertion assure que pour chaque i, la liste modifiée est une permutation de la
liste initiale.
Après le premier passage dans la boucle, pour i égal à 0, l’élément liste[0] et la première clé,
d’indice 1, sont rangés dans l’ordre. Donc la liste liste[0:2] est triée. La propriété est donc
vraie pour i égal à 0.
Si après un passage pour i égal à un k quelconque, la liste liste[0:k+2] est triée, alors au
passage suivant l’élément liste[k+2] est inséré à la bonne place parmi les éléments de la liste
liste[0:k+2] ou reste à sa place. Donc la liste liste[0:k+3] est triée. La propriété est
donc vraie pour i égal à k + 1.

La propriété est donc encore vraie après le dernier passage, pour i égal à n− 2. À ce moment la
liste liste[0:n], c’est-à-dire la liste liste, est triée.

Coût de l’algorithme

Nous avons deux boucles imbriquées. Pour une liste de longueur n, le nombre de comparaisons peut
être différent suivant la liste.

Si la liste est déjà triée, pour chaque valeur de i, k prend la valeur de i+1 et il y a une seule
comparaison, le test cle < liste[k-1]. La variable i prenant n-1 valeurs, cela nous fait un total de
n-1 comparaisons. Le coût de l’algorithme est donc de l’ordre de n.

Si par contre les éléments de la liste sont rangés dans l’ordre décroissant, alors pour chaque valeur de
i, k prend les valeurs de i+1 à 1 soit i+1 valeurs et donc i+1 comparaisons.

Au total, nous avons donc : 1 + 2 + . . . + (n-2) + (n-1) comparaisons. Un calcul mathématique
nous donne n(n-1)/2 comparaisons. Le coût est donc de l’ordre de n2 comparaisons.

On peut montrer qu’en moyenne, le coût est de l’ordre de n2 comparaisons, comme pour le tri par
sélection. Mais le tri par insertion est très intéressant si la liste est "presque triée".

Serge Bays 3 Lycée Les Eucalyptus


