Informatique en PCSI

Informatique PCSI
TP 7 : algorithmes (manipulations d’une
image)

Pour tester les programmes on utilise une image au format pbm.

Enoncé des exercices

Exercice 1

Ecrire une fonction inverser_nb qui prend en parametre une matrice représentant une image au
format pbm et modifie la matrice afin d’obtenir une inversion noir et blanc.

def inverser_nb (img) :
haut, larg = len(img), len(img[O0])

On dispose d’une image chat . pbm. On écrit les instructions :

mat = lire_fichier_ pbm(’chat.pbm’)
inverser_nb (mat)
ecrire_fichier_pbm(’inverse_chat.pbm’, mat)

On obtient le résultat :

Exercice 2

On envisage une symétrie axiale avec un axe vertical. Il convient donc d’échanger chaque pixel d’in-
dice (7, j) avec le pixel d’indice (i,p — 1 — j), 7 allant de 0 a n — 1 et j allant de 0 a p/2. Attention a la
boucle interne, si on écrit for j in range (larg) les pixels sont échangés deux fois et on obtient
I’image initiale. L’indice 7 est ’indice de la ligne.

Ecrire une fonction sym_vert qui prend en paramétre une matrice représentant une image au format
pbm et modifie la matrice afin d’effectuer une symétrie d’axe vertical.

Pour une symétrie axiale avec un axe horizontal, il convient d’échanger chaque ligne d’indice 7 avec
la ligne d’indice n — 1 — i pour 7 allant de 0 a n/2. Ici aussi, attention a ne pas échanger deux fois les lignes
avec une boucle for i in range (haut).

Serge Bays 1 Lycée Les Eucalyptus

Informatique en PCSI

Ecrire une fonction sym_hor qui prend en parametre une matrice représentant une image au format
pbm et modifie la matrice afin d’effectuer une symétrie d’axe horizontal.
On obtient apres une symétrie horizontale :

Exercice 3

Rotation

Pour une image représentée par une matrice de pixel, une rotation présente de nombreuses difficultés.
Celles-ci proviennent principalement du fait qu’un pixel a des coordonnées entiéres. La suite se limite donc
a des images carrées (n = p) avec une rotation d’un quart de tour.

Une rotation d’un quart de tour consiste a permuter les pixels des quatre quadrants. On note p; le
pixel d’indice (i, 7), p2 le pixel d’indice (n — 1 — j,1), ps le pixel d’indice (n — 1 —é,n — 1 — j), py le
pixel d’indice (j,n — 1 —). On effectue pour ¢ allant de 0 a n/2 et j allant de 0 a n/2, les permutations
(p1>p27p37p4) — (p27p37p47p1)'

Divers algorithmes ont été étudiés dans les années 1980 pour manipuler des images en particulier
pour un affichage correct sur un écran, a I’époque en noir et blanc. Avec peu de mémoire disponible et
une capacité de calcul bien moindre qu’aujourd’hui, différentes primitives (des procédures de base) ont
été développées comme « déplacer un bloc de bits d’un endroit a un autre en mémoire ». Un algorithme
classique comme la rotation d’un quart de tour utilisait ce déplacement. Une image carrée est découpée en
quatre carrés de méme taille. Chaque carré est déplacé, (cq, co, c3,cq) — (c2, 3, cq, 1) et on effectue la
rotation d’un quart de tour de chaque carré par un appel récursif.

Compléter la fonction rotation qui suit :

def rotation(img, x, y, n): # n est la taille du carré
if n > 1:
n=n// 2 # pour découper le carré en 4 carrés
on déplace les carrés pixel par pixel
for i in range(x, x+n):
for j in range(y, y+n):

temp = img[i] [J]

img[i][3j] = img[...][...]

img[i]l] [n + j] = img[...][...]

img[n + il [n + j] = img[...][...]

img[n + i][Jj] = temp
on effectue les rotations des 4 carrés par appels récursifs
rotation(img, x, y, n)

rotation(img, ..., ..., ...)
rotation(img, ..., ..., ...)
rotation(img, ..., ..., ...)

On utilise la fonction rotation avec le fichier chat . pbm. La figure qui suit présente quelques
résultats intermédiaires.

Serge Bays 2 Lycée Les Eucalyptus

Informatique en PCSI

mat = lire_fichier_ pbm(’chat.pbm’)
rotation (mat, 0, 0, len(mat))
ecrire_fichier_pbm(’rot_chat.pbm’, mat)

Exercice 4

Réduction et agrandissement

On dispose d’une image de taille (n, p) et on souhaite la réduire. Nous supposons que la réduction
consiste a diviser la longueur et la largeur par un nombre entier d. C’est le cas le plus simple et on envisage
de garder une ligne sur d lignes et une colonnes sur d colonnes.

def reduction (img, d):
n, p = len(img), len(img[O0])
matl = [[0 for j in range(p)] for i in range(n//d + 1)]
for i in range(n):
if i & d ==
for j in range (p) :
matl[i//d]l[j] = img[i][]]
mat2 = [[0 for j in range(p//d + 1)] for i in range(n//d + 1)]
for i in range(n//d + 1):
for j in range (p) :
if jJ % d ==
mat2[i] [j//d] = matl[i][]]
return mat2

La figure représente I’image intermédiaire avec d = 3.

L
19

-

Pour I’agrandissement par un facteur d entier, un procédé simple est de copier d fois chaque colonne
puis d fois chaque ligne.

Ecrire une fonction agrandissement en suivant le procédé décrit ci-dessus et le modele de la
fonction reduction.

Serge Bays 3 Lycée Les Eucalyptus

