
Informatique en PCSI

Informatique PCSI
TP 7 : algorithmes (manipulations d’une

image)

Pour tester les programmes on utilise une image au format pbm.

Énoncé des exercices

Exercice 1

Écrire une fonction inverser_nb qui prend en paramètre une matrice représentant une image au
format pbm et modifie la matrice afin d’obtenir une inversion noir et blanc.

def inverser_nb(img):

haut, larg = len(img), len(img[0])

...

...

...

On dispose d’une image chat.pbm. On écrit les instructions :

mat = lire_fichier_pbm(’chat.pbm’)

inverser_nb(mat)

ecrire_fichier_pbm(’inverse_chat.pbm’, mat)

On obtient le résultat :

Exercice 2

On envisage une symétrie axiale avec un axe vertical. Il convient donc d’échanger chaque pixel d’in-
dice (i, j) avec le pixel d’indice (i, p − 1 − j), i allant de 0 à n − 1 et j allant de 0 à p/2. Attention à la
boucle interne, si on écrit for j in range(larg) les pixels sont échangés deux fois et on obtient
l’image initiale. L’indice i est l’indice de la ligne.

Écrire une fonction sym_vert qui prend en paramètre une matrice représentant une image au format
pbm et modifie la matrice afin d’effectuer une symétrie d’axe vertical.

Pour une symétrie axiale avec un axe horizontal, il convient d’échanger chaque ligne d’indice i avec
la ligne d’indice n−1− i pour i allant de 0 à n/2. Ici aussi, attention à ne pas échanger deux fois les lignes
avec une boucle for i in range(haut).

Serge Bays 1 Lycée Les Eucalyptus

Informatique en PCSI

Écrire une fonction sym_hor qui prend en paramètre une matrice représentant une image au format
pbm et modifie la matrice afin d’effectuer une symétrie d’axe horizontal.

On obtient après une symétrie horizontale :

Exercice 3

Rotation
Pour une image représentée par une matrice de pixel, une rotation présente de nombreuses difficultés.

Celles-ci proviennent principalement du fait qu’un pixel a des coordonnées entières. La suite se limite donc
à des images carrées (n = p) avec une rotation d’un quart de tour.

Une rotation d’un quart de tour consiste à permuter les pixels des quatre quadrants. On note p1 le
pixel d’indice (i, j), p2 le pixel d’indice (n − 1 − j, i), p3 le pixel d’indice (n − 1 − i, n − 1 − j), p4 le
pixel d’indice (j, n − 1 − i). On effectue pour i allant de 0 à n/2 et j allant de 0 à n/2, les permutations
(p1, p2, p3, p4) 7−→ (p2, p3, p4, p1).

Divers algorithmes ont été étudiés dans les années 1980 pour manipuler des images en particulier
pour un affichage correct sur un écran, à l’époque en noir et blanc. Avec peu de mémoire disponible et
une capacité de calcul bien moindre qu’aujourd’hui, différentes primitives (des procédures de base) ont
été développées comme « déplacer un bloc de bits d’un endroit à un autre en mémoire ». Un algorithme
classique comme la rotation d’un quart de tour utilisait ce déplacement. Une image carrée est découpée en
quatre carrés de même taille. Chaque carré est déplacé, (c1, c2, c3, c4) 7−→ (c2, c3, c4, c1) et on effectue la
rotation d’un quart de tour de chaque carré par un appel récursif.

Compléter la fonction rotation qui suit :

def rotation(img, x, y, n): # n est la taille du carré

if n > 1:

n = n // 2 # pour découper le carré en 4 carrés

on déplace les carrés pixel par pixel

for i in range(x, x+n):

for j in range(y, y+n):

temp = img[i][j]

img[i][j] = img[...][...]

img[i][n + j] = img[...][...]

img[n + i][n + j] = img[...][...]

img[n + i][j] = temp

on effectue les rotations des 4 carrés par appels récursifs

rotation(img, x, y, n)

rotation(img, ..., ..., ...)

rotation(img, ..., ..., ...)

rotation(img, ..., ..., ...)

On utilise la fonction rotation avec le fichier chat.pbm. La figure qui suit présente quelques
résultats intermédiaires.

Serge Bays 2 Lycée Les Eucalyptus

Informatique en PCSI

mat = lire_fichier_pbm(’chat.pbm’)

rotation(mat, 0, 0, len(mat))

ecrire_fichier_pbm(’rot_chat.pbm’, mat)

Exercice 4

Réduction et agrandissement
On dispose d’une image de taille (n, p) et on souhaite la réduire. Nous supposons que la réduction

consiste à diviser la longueur et la largeur par un nombre entier d. C’est le cas le plus simple et on envisage
de garder une ligne sur d lignes et une colonnes sur d colonnes.

def reduction(img, d):

n, p = len(img), len(img[0])

mat1 = [[0 for j in range(p)] for i in range(n//d + 1)]

for i in range(n):

if i % d == 0:

for j in range(p):

mat1[i//d][j] = img[i][j]

mat2 = [[0 for j in range(p//d + 1)] for i in range(n//d + 1)]

for i in range(n//d + 1):

for j in range(p):

if j % d == 0:

mat2[i][j//d] = mat1[i][j]

return mat2

La figure représente l’image intermédiaire avec d = 3.

Pour l’agrandissement par un facteur d entier, un procédé simple est de copier d fois chaque colonne
puis d fois chaque ligne.

Écrire une fonction agrandissement en suivant le procédé décrit ci-dessus et le modèle de la
fonction reduction.

Serge Bays 3 Lycée Les Eucalyptus

