Informatique en PCSI

Informatique PCSI
Prérequis TP 7 : manipulation d’une image

1 Fichiers images

Si on regarde les propriétés d’un fichier avec 1’extension jpg représentant une image, on obtient des
informations sur I’emplacement, la taille, la date de création. Il y a aussi la possibilité d’avoir plus de
détails pour un fichier d’une photo provenant d’un appareil comme un smartphone. Nous pouvons obtenir
de nombreuses informations sur le fichier mais aussi sur I’image, la photo, 1’appareil utilisé, le logiciel, la
date de prise de vue, la position GPS, etc. Ces informations sont enregistrées dans le fichier avec I’image
proprement dite.

1.1 Une image

On distingue parmi les images numériques, les images vectorielles et les images matricielles. Les
images vectorielles sont créées par des équations mathématiques. Les images matricielles sont constituées
d’un ensemble de points ou pixels. La suite concerne les images matricielles.

Une image est définie par son nombre de pixels. Par exemple une image contenant 1600 pixels en
largeur et 1200 pixels en hauteur a une définition de 1600 x 1200 pixels soit 1920000 pixels (pres de 2
mégapixels). La résolution est exprimée en points ou pixels par pouce (ppp) ou dot per inch en anglais
(dpi). Un pouce vaut environ 2,54 cm. Ainsi, une résolution de 72 ppp en largeur et en hauteur signifie
qu’un carré de coté 2,54 cm contient 72 x 72 = 5184 pixels.

Une image de longueur 1600 pixels et de résolution 300 ppp, qui est une résolution correcte pour une
impression, a une longueur de 5,33 pouce soit 13,55 cm.

Dans le codage de couleur RGB (ou RVB en frangais pour rouge, vert, bleu), la couleur de chaque
pixel est codée par trois octets. Chaque octet représente 1’intensité d’une composante qui varie donc entre
0 et 255. Le triplet (255, 0, 0) code le rouge, le triplet (0, 0, 0) code le blanc, le triplet (255, 255, 255) code
le noir, le triplet (120, 120, 120) code un niveau de gris, le triplet (255, 255, 0) code le jaune.

Le programme suivant aide a comprendre comment est composée une image. La fonction pixel
permet de dessiner un pixel, en fait un petit carré. La fonction dessine dessine les pixels donnés dans
une matrice.

from turtle import =

def pixel (coords, taille, couleur): # définition d’un pixel

ht ()

up ()

goto (coords)

down ()

color (couleur)

begin_fill ()

for i in range(4): # un pixel est représenté par un carré
forward(taille)
right (90)

end_fill ()

def dessine (image, resolution, origine=(0,0)) :
speed (’ fastest’)
n = len (image)
p = len(image[0])

Serge Bays 1 Lycée Les Eucalyptus

Informatique en PCSI

taille = 1 // resolution
X_origine, y_origine = origine
x0 = x_origine -p * taille // 2
y0 = y_origine + n x taille // 2
up(); goto((x0, y0)); down ()
for i in range(n):
for j in range (p):
coords = (x0 + j % taille, y0 —-i x taille)
pixel (coords, taille, image[i]l[3]])

colormode (255)

imagel = [[(255, 0, 0), (O, 255, 0), (0, O, 255), (100, 100, 100)1,
[(255, 255, 0), (0, 255, 255), (255, 0, 255), (150, 150, 150)],
[(128, 128, 0O0), (O, 128, 128), (128, O, 128), (200, 200, 200)1]

dessine (imagel, 1/30, (0, 100)) # imagel est une matrice de pixels

Les « pixels » sont représentés ci-dessous en niveaux de gris.

La liste des pixels est longue a écrire. On peut créer une image (une matrice) aléatoire.

from random import randint
def alea(n, p): # largeur, hauteur
img = [[(0, 0, 0) for j in range(n)] for i in range(p)]
for i in range(p):
for j in range(n):
r, v, b = randint (0, 255), randint (0, 255), randint (0, 255)
img[i]l[j] = (r, v, b)
return img

image2 = alea(l6, 12)
dessine (image2, 1/16, (-200, 0))

Le dessin prend du temps et le nombre de points est limité si on souhaite le voir s’afficher a 1’écran.
Ce n’est évidemment pas une bonne méthode pour construire des images.

1.2 Transformation d’une image

La modification d’une image consiste a modifier la matrice de pixels. En général cela s’effectue avec
deux boucles imbriquées qui permettent d’avoir acces a chaque pixel. La complexité en temps est alors
de ’ordre de n x p si n est le nombre de lignes et p le nombres de colonnes. On peut essayer autant que
possible a limiter la complexité en espace.

Serge Bays 2 Lycée Les Eucalyptus

Informatique en PCSI

2 Fichiers PBM, PGM et PPM

Ce sont les formats de fichiers : portable bitmap (pbm), portable graymap (pgm) et portable pixmap
(ppm).

On peut obtenir un fichier pbm, pgm ou ppm a partir d’'une image dans un format quelconque. On
I’ouvre avec un logiciel comme GIMP et on exporte ’image en choisissant 1’extension. Attention, pour
chaque extension il existe un format texte ASCII et un format binaire. On trouve les informations néces-
saires par exemple a I’adresse : https://fr.wikipedia.org/wiki/Portable_pixmap.

Choisir un fichier image au format jpeg ou png, le copier et renommer le "imagel" (.jpg ou .png).
L’ouvrir avec GIMP.

Au besoin : dans le menu Image, Echelle et taille de I’image, choisir la largeur et la hauteur de I’ ordre
de 800 par 600 et cliquer sur mise a 1’échelle. (Obtenir une taille maxi de 500 Ko).

Ensuite dans le menu Fichier, Exporter sous ..., modifier le nom en "imagel.pbm", cliquer sur Expor-
ter. Dans Formatage des données, choisir ASCII et cliquer sur Exporter.

Comparer la taille avec celle du fichier original. Ouvrir le fichier obtenu avec un éditeur de texte. On
obtient : un code P1, puis éventuellement un commentaire # ..., puis deux nombres. Que signifient ces deux
nombres ? La suite est composée de 0 et de 1 (I’image est en noir est blanc).

Recommencer la procédure d’exportation et modifier le nom en "imagel.pgm" (choisir toujours AS-
CII). Cette fois avec un éditeur de texte on lit le code P2, puis éventuellement un commentaire # ..., puis
les deux méme nombres que précédemment. La suite est composée d’entiers entre 0 et 255.

Recommencer pour obtenir un fichier "imagel.ppm".

2.1 KEecriture

L’ objectif est d’écrire un programme avec trois fonctions qui lisent chacune un de ces types de fichier
et placent les données dans une matrice de pixels (une liste de listes), une sous-liste représentant une ligne
de pixels : en pbm et pgm une valeur par pixel, O ou 1 pour noir et blanc, de 0 a 255 pour niveaux de gris,
en ppm 3 nombres par pixels chacun de 0 a 255.

Ecriture d’un fichier pbm

def ecrire_fichier_pbm(nom, mat):

assert nom[len (nom)-3: len(nom)] == "pbm"
hauteur = len (mat)

largeur = len(mat[0])

f = open (nom, ’'w’)

f.write(’P1\n’ + str(largeur) + ’ ' + str(hauteur) + ’'\n’)
for i in range (hauteur) :
for j in range(largeur) :
bit = str(mat[i][Jj])
f.write (bit)
if (i * largeur + j + 1) % 70 == O0:
f.write ('\n’)
f.close()

Ecriture d’un fichier pgm

def ecrire_fichier_pgm(nom, mat, maxi):
assert nom[len (nom)-3: len(nom)] == "pgm"
hauteur = len (mat)

Serge Bays 3 Lycée Les Eucalyptus

Informatique en PCSI

largeur = len(mat[0])
f = open (nom, ’'w’)
f.write ('P2\n’ + str(largeur) + ' ’ + str (hauteur) + ’'\n’)
f.write(maxi + "\n’)
for i in range (hauteur) :
for j in range(largeur) :

octet = str(mat[i][j])

f.write (octet)

f.write(’\n’)
f.close ()

Ecriture d’un fichier ppm

def ecrire_fichier_ppm(nom, mat, maxi):
assert nom[len (nom)-3: len(nom)] == "ppm"
hauteur = len (mat)
largeur = len(mat[0])
f = open (nom, ’'w’)
f.write ('P3\n’ + str(largeur) + ’ ’ + str (hauteur) + ’'\n’)
f.write (maxi + "\n’)
for i in range (hauteur) :
for j in range(largeur):
pixel = mat[i] []]
r, v, b = str(pixel[0]), str(pixel[l]), str(pixel[2])
f.write(r + "\n’” + v + '\n’” + b + "\n’)
f.close()

On peut regrouper les trois fonctions en une seule :

def ecrire(nom, mat, maxi=None) :
if nom[len(nom)-3: len(nom)] == "pbm":
ecrire_fichier_pbm(nom, mat)
elif nom[len (nom)-3: len(nom)] == "pgm":
ecrire_fichier_ pgm(nom, mat, maxi)
elif nom[len (nom)-3: len(nom)] == "ppm":
ecrire_fichier_ ppm(nom, mat, maxi)

2.2 Lecture

L’ objectif est d’écrire un programme qui a partir d’'une matrice de pixels écrit le fichier image. On
peut vérifier le résultat obtenu avec GIMP.

Lecture d’un fichier pbm

Il s’agit de lire un fichier texte et de récupérer les informations : le code P1 caractéristique d’un fichier
pbm, la largeur, la hauteur et les valeurs des pixels O ou 1.

def lire_fichier_pbm(nom) :
f = open(nom, ’'r’)

Serge Bays 4 Lycée Les Eucalyptus

Informatique en PCSI

magic = f.readline() .rstrip ()
dim = f.readline ()
while dim[0] == "#":
dim = f.readline ()
dim = dim.rstrip() .split (" ")

dim = [int (dim[0]), int (dim[1])]
mat = [[0 for j in range(dim[0])] for i in range(dim[1l])]
tab = f.readlines /()

i, 3 =0, 0
for ligne in tab:
if ligne[0] == "4#":
continue
ligne = ligne.rstrip/()
for n in ligne:

if n =" ":
mat[i][j] = int (n)
j = (J+1) % dim[O0]
if 3 == 0
(

f.close ()
return mat

Lecture d’un fichier pgm

def lire_fichier_pgm(nom) :

f = open(nom, ’'r’)
magic = f.readline () .rstrip ()
dim = f.readline ()
while dim[0] == "#":
dim = f.readline ()
dim = dim.rstrip() .split (" ")
dim = [int (dim[0]), int (dim[1])]
maxi = f.readline() .rstrip/()
mat = [[0 for j in range(dim[0])] for i in range(dim[1l])]
tab = f.readlines /()

i, 3 =0, 0
for ligne in tab:
if ligne[0] == "#":
continue
ligne = ligne.rstrip() .split (" ")
for n in ligne:

if nl=" ":
mat[i][j] = int (n)
j = (3§+1) % dim[0]
if 3 == 0
(

f.close ()
return mat, maxi

Lecture d’un fichier ppm

Serge Bays 5 Lycée Les Eucalyptus

Informatique en PCSI

def lire_fichier_ppm(nom) :
f = open(nom, ’'r’)
magic = f.readline () .rstrip ()
dim = f.readline ()
while dim[0] == "#":
dim = f.readline ()
dim = dim.rstrip() .split (" ")
dim [int (dim[0]), int (dim[1])]
maxi = f.readline() .rstrip/()
mat = [[0 for j in range(dim[0])] for i in range(dim[1l])]
tab = f.readlines /()
i, 3 =0, 0
pixel = []
for ligne in tab:
if ligne[Q] == "#":
continue
ligne = ligne.rstrip().split(" ")
for n in ligne:
if n !=" ":

if len(pixel) ==
pixel.append (int (n))
mat[i] [J] = pixel
J = (j+1) % dim[O0]
if j ==
i = (i+1l) % dim[1]
elif len(pixel) = 3
pixel = [int (n)]
else:
pixel.append (int (n))

f.close ()
return mat, maxi

On peut regrouper les trois fonctions en une seule :

def lire (nom) :

if nom[len(nom)-3: len(nom)] == "pbm":
return lire_fichier_pbm(nom)

elif nom[len(nom)-3: len(nom)] == "pgm":
return lire_fichier_pgm(nom)

elif nom[len (nom)-3: len(nom)] == "ppm":

return lire_fichier_ ppm(nom)

Serge Bays 6 Lycée Les Eucalyptus

	Fichiers images
	Une image
	Transformation d'une image

	Fichiers PBM, PGM et PPM
	Écriture
	Lecture

