Informatique en PCSI

Informatique PCSI
Prérequis TP 6 : algorithmes gloutons

Un probleme d’optimisation a deux caractéristiques : une fonction que 1’on doit maximiser ou mi-
nimiser et une série de contraintes auxquelles il faut satisfaire. On peut essayer de résoudre ce type de
probleme en écrivant un algorithme qui énumere les possibilités de maniere exhaustive afin de trouver la
meilleure. C’est un algorithme trés simple mais souvent inutilisable en machine a cause de son cofit. L’ ob-
jectif d’un algorithme glouton (en anglais « greedy algorithm ») est d’obtenir une solution rapidement.
Mais celle-ci n’est pas toujours la solution optimale.

Un choix peut étre globalement optimal, c’est le meilleur de tous, ou localement optimal, c’est le
meilleur parmi un ensemble restreint de choix. A chaque étape exécutée par un algorithme, se présente un
ensemble de choix et un algorithme glouton fait le meilleur choix parmi les propositions. Un choix glouton
est donc un choix localement optimal. La question est de savoir si en faisant une série de choix localement
optimaux, on fini par aboutir a une solution optimale. C’est parfois le cas mais pas toujours.

Probléme du rendu de monnaie

Pour simplifier nous supposons que nous n’avons que des pieces. Un systeme de pieces est alors un
n-uplet S = (po,p1,.-.,Pn—1), OU p; représente la valeur de la piece d’indice i. Ces valeurs constituent
une suite de nombres entiers strictement croissante avec pg = 1. Si pg > 1, alors certaines sommes ne
peuvent pas €tre rendues.

Le probléme du rendu de monnaie consiste a trouver une liste d’entiers positifs [xg, 1, ..., Zp—1]
qui vérifie xopg + x1p1 + ... + Tp_1Pp—1 = 7T OU 1 est la somme a rendre en minimisant la somme
xo+x1+ ...+ xn_1, c’est-a-dire le nombre de picces utilisées.

La condition xzgpg + x1p1 + ... + Tn_1Pp—1 = 7 est appelée contrainte.

Dans le systeme de la zone euro, par exemple, nous avons en centimes les pieces suivantes :

S = (1,2,5,10,20,50, 100,200, 500) ou 100, 200 et 500 représentent respectivement les pieces de
1,2 et 5 euros.

Il y a de nombreuses manieres de rendre huit centimes. Les pieces qui peuvent étre utilisées sont les
pieces de 1, 2 et 5 centimes. Nous n’écrivons que les triplets possibles : [8,0, 0], [6,1,0], [4,2,0], [3,0, 1],
(2,3,0], [1,1,1] et [0, 4, 0].

Un programme permet de tester de maniere exhaustive tous les triplets :

p= (1, 2, 5)
for i in range(9):
for j in range(5):
for k in range(2):
s =1 % p[0] + jJ = p[l] + k x p[2]
if s == 8:
print ([i, 3J, k1)

Le triplet qui minimise le nombre de piéces est le triplet [1, 1, 1] avec 3 pieces.

Avec le systeme donné en exemple, un algorithme glouton fournit la solution optimale. On cherche,
par valeur décroissante en partant de la piece qui a la plus forte valeur, la premiere piece qui a une valeur
inférieure ou égale a la somme a rendre r. On prend cette pie¢ce, on retranche sa valeur v a . On recom-
mence en partant de la piece prise en cherchant celle qui a une valeur inférieure ou égale a la nouvelle
somme a rendre 7 — v. On prend cette piece, et ainsi de suite jusqu’a arriver a une somme a rendre nulle.

Les entrées sont p pour le systeéme de pieces et r pour la somme a rendre.

Serge Bays 1 Lycée Les Eucalyptus



Informatique en PCSI

def monnaie(p, r):

n = len(p)
i=n-1
solution = n = [0]

while r > O:
while p[i] > r:
i=41i-1
solution[i] = solution[i] + 1
r =r — pl[il]
return solution

Test de 1a fonction :

>>p = (1, 2, 5, 10, 20, 50, 100, 200, 500)
>>> monnaie (p, 8)
[ll ll ll OI OI OI OI OI O]

Dans le cas général, avec un systeme différent de celui montré en exemple, c’est un probleme difficile
a résoudre. Mais dans presque tous les systeémes de monnaie, I’algorithme glouton est optimal. Pour rendre
la monnaie, on rend la piece (ou le billet) de valeur maximale, et on continue tant qu’il reste quelque chose
a rendre.

Le systeme monétaire utilisé en Angleterre jusque dans les années 1960 comportait une multitude de
pieces : des pieces de 1 penny, 3 pence, 4 pence, 6 pence, 12 pence soit 1 shilling, etc. (Le mot penny est
le singulier de pence.)

Pour rendre 8 pence par exemple, le choix glouton donne [2, 0, 0, 1], soit une piece de 6 pence et deux
pieces d’un penny, alors que le choix optimal est [0, 0, 2, 0], soit 2 pieces de 4 pence.

Plus court chemin dans le plan

Supposons que nous disposons de n points placés dans le plan muni d’un repere orthonormé. Ces
points sont donnés par leurs coordonnées. Etant donné un point P quelconque du plan, la question est de
trouver un chemin qui commence en P et qui passe par les n points sans jamais passer deux fois par le
méme point. Un chemin entre deux points est un segment. Quel est le plus court chemin ?

On pourrait envisager de tester tous les chemins possibles et de retenir le plus court. Ce type de mé-
thode s’appelle méthode par « force brute ». Avec trois points A, B, C', nous avons six chemins possibles :
P-A-B-C,P-A-C-B,P-B-A-C,P-B-C-A,P-C-A-B,P-C-B- A. Avec 4 points,
nous avons 4 fois plus de chemins, soit 24. Avec 10 points nous avons 10 X 9 x ... x 2 x 1 = 3628800
chemins possibles. Il faut écrire tous ces chemins et déterminer le plus court en faisant autant de tests que
de chemins. Admettons que cela puisse se faire en une secondes. Avec 15 points, il y a 1307674368000
chemins possibles, soit environ 3 x 10° fois plus de chemins qu’avec 10 points. Il faudrait donc 3 x 106
secondes pour trouver le plus court, soit plus de 4 jours. Avec 16 points, il y a 16 fois plus de chemins et
il faudrait donc plus de 64 jours, et ainsi de suite. On comprend bien que cette méthode n’est utilisable
qu’avec un nombre restreint de points. Une méthode gloutonne par contre est envisageable.

Nous supposons que les n points appartiennent a un carré dont la longueur du c6té est stockée dans
une variable dim.

Nous disposons de la distance euclidienne dans le plan et commencons par définir une fonction qui
renvoie la distance entre deux points. Un point est représenté par une liste contenant 1’abscisse et I’ordonnée
du point.

Serge Bays 2 Lycée Les Eucalyptus



Informatique en PCSI

from math import sqrt

def distance(pl, p2):
x1l, yl = pl
X2, y2 = p2
return sqgrt ((xl1 — x2) *x* 2 + (yl — y2) xx 2)

Nous construisons un tableau contenant les distances entre les différents points considérés et entre
chacun de ces points et le point P.

La fonction distances prend en parametre la liste des n points et le point de départ P. Le tableau
renvoyé tab est une liste de n + 1 listes de longueurs n + 1. L’élément tab[i] [j] est la distance
entre les points d’indices i et j, P ayant pour indice n. Ce tableau est bien slir symétrique : la valeur de
tab[i] [j] estégaleacellede tab[J][1].

def distances (pts, dep):
n = len (pts)
tab = [(n+l)*[0] for i in range(n+1l) ]
for i in range(n):
for j in range(i):
tab[i] [Jj] = distance(pts[i], pts[j]l)
tab[jl[i] = tab[i][]]
tab[n] [i] = distance (dep, pts[i])
tab[i] [n] = tab[n][i]
return tab

Notons que la fonction calcule n(n + 1) /2 distances et a donc un cofit qui est quadratique en fonction
de n

Nous disposons des distances entre deux points quelconques. Nous pouvons donc écrire une fonction
longueur qui prend en parametres un chemin et un tableau des distances, et qui renvoie la longueur du
chemin (qui commence en P).

def longueur (chemin, dist):
d=20
id_pt = len(dist) - 1
for point in chemin:
d = d + dist[id_pt] [point]
id_pt = point
return d

Nous construisons un chemin en choisissant a chaque étape le point le plus proche de la position
courante parmi les points disponibles (ceux par lesquels le chemin n’est pas encore passé). On dit aussi le
« plus proche voisin ». Autrement dit nous appliquons une stratégie gloutonne.

Pour cela nous écrivons une fonction indice qui prend en parametres la position courante, le tableau
des distances et les indices des points disponibles. La fonction renvoie 1’indice du point le plus proche.

Pour avoir la liste des points disponibles on pourrait commencer avec la liste de tous les points et
supprimer a chaque étape le point choisi. Mais il est plus simple de construire une liste dont les n éléments
sont égaux a True, 'indice d’un élément correspondant a I’indice d’un point, et de passer la valeur de
I’élément d’indice i a False quand le point d’indice i est choisi.

Serge Bays 3 Lycée Les Eucalyptus



Informatique en PCSI

def indice(position, dist, dispo):

n = len(dist) - 1
mini = 3 % dim # supérieur a la diagonale du carré
for i in range(n):
if dispol[i]:
d = dist[position] [i]
if d < mini:
mini = d
ind = 1

return ind

Une derniére fonction prend en parametre le tableau des distances et construit le chemin.

def plus_court (dist):

n = len(dist) - 1
chemin = []

dispo = n * [True]
position = n

while len(chemin) < n:
position = indice (position, dist, dispo)
chemin.append (position)
dispo[position] = False

return chemin

Pour tester le programme, nous choisissons un nombre de points et la dimension du carré dans lequel
ces points sont choisis au hasard. Une fonction points crée la liste des n points tous distincts.

from random import randint
nbpoints, dim = 10, 20

def points(n, c):

liste = []

while len(liste) < n:
X = randint (-c, c)
y = randint (-c, c)

if [x, y] not in liste:
liste.append([x, y])
return liste

On crée le point de départ et nous pouvons représenter ces points sur un graphique afin de vérifier que
le programme est correct.

depart = (randint (-dim, dim), randint (-dim, dim))

import matplotlib.pyplot as plt

Serge Bays 4 Lycée Les Eucalyptus



Informatique en PCSI

pts = points (nbpoints, dim)

x = [u[0] for u in pts]

y = [u[l] for u in pts]

plt.plot (x, y, "x")

plt.plot (depart[0], depart[l], "+")
plt.show ()

Le test final permet de déterminer le chemin, de I’afficher dans un graphique et d’afficher la longueur
du chemin.

tableau = distances (pts, depart)
ch = plus_court (tableau)
print (longueur (ch, tableau))

xliste = [depart[0]] + [pts[k][0] for k in ch]
yliste = [depart[l]] + [pts[k][1l] for k in ch]
plt.plot(x, vy, "x") # affichage des points
plt.plot (depart[0], depart[l], "+")

plt.plot (xliste, yliste) # affichage du chemin
plt.show ()

Il reste deux questions auxquelles il faut répondre : cet algorithme glouton nous permet-il d’obtenir
le chemin le plus court et quel est son colit?

La réponse est non a la premiere question. Prenons trois points A(0;0), B(5,1;0,2) et C(10;0).
Soit P de coordonnées (2,6 ;1). Avec I’algorithme du plus proche voisin nous obtenons le chemin P - B -
C - A. Lalongueur de ce cheminest PB4+ BC+CA ~ 2,6+4,9+10 = 17, 5. Mais le plus court chemin
est P- A- B - (C avec une longueur égale 8 PA + AB + BC = 2,8+ 5,1+ 4,9 = 12,8. En général
I’algorithme du plus proche voisin fournit un chemin plus long que le plus court chemin et la différence
augmente avec le nombre de points. Il est conseillé de faire un dessin.

Pour la deuxiéme question, nous évaluons le cofit de chaque fonction.

La fonction distances construit un tableau de (n + 1)? valeurs et a un coiit de I’ordre de n?
La fonction indice comporte une boucle et a un cofit linéaire. La fonction plus_court comporte
une boucle avec a chaque passage un appel a la fonction indice, donc son colit est quadratique. En
conclusion, cet algorithme a un colit quadratique en fonction de n.

Serge Bays 5 Lycée Les Eucalyptus



