Informatique en PCSI

Informatique PCSI
Prérequis TP 5 : algorithmes récursifs

Algorithmes dichotomiques

Recherche dichotomique

Le programme qui suit est une traduction en récursif du programme itératif vu au TP 4. Son cofit est
du méme ordre que celui de 1’algorithme itératif. La terminaison se démontre comme pour I’algorithme
itératif en étudiant les valeurs successives des expressions d—g, d et g étant ici des parametres de la
fonction récursive. La liste passée en parametre est supposée non vide.

def dicho_rec(liste, x, g, d):
if g ==
return liste[g] == x
m= (g+d) // 2
if x == liste[m]:
return True
elif x < liste[m]:
if g == m:
return False
else:
return dicho_rec(liste, x, g, m-1)
else:
return dicho_rec(liste, x, m+1, d)

On utilise la fonction avec un premier appel dicho_rec (1st, x, 0, len(lst)-1). A chaque
appel récursif, I'un des deux parameétres g ou d est modifié.

Exemples classiques

Premier exemple

L’un des exemples les plus classiques est une fonction mathématique, la fonction factorielle. On dit
« factorielle n » et on note avec un point d’exclamation n!.

Cette fonction est définie « par récurrence » sur les entiers naturels : 0! = 1 et pour tout entier naturel
nnonnul, n! =n x (n —1)!

Autrement dit, pour tout n nonnul, n! =n x (n—1) X (n —2) x ... x 2 x 1.

Dans I’écriture 0! = 1 et n! = n x (n — 1)! pour n non nul, nous voyons les deux aspects d’une
fonction récursive : un cas simple qui correspond a la condition d’arrét et un cas complexe, celui de 1’appel
récursif pour obtenir la valeur de (n — 1)! afin de calculer n!.

L’écriture d’une fonction récursive consiste a traduire la définition mathématique.

def factorielle(n):
""" n est de type int positif
renvoie n!"""
if n > 0:
return n * factorielle (n-1)
else:
return 1

Serge Bays 1 Lycée Les Eucalyptus

Informatique en PCSI

La condition n > 0 au début de I’exécution de la fonction sert a déterminer s’il faut procéder a un
appel récursif ou pas. Des que la valeur de n est négative ou nulle, la valeur 1 est renvoyée. A cet effet, les
valeurs passées en parametres lors des appels récursifs constituent une suite décroissante qui en n étapes
prend une valeur nulle si n est un entier positif.

Voici un exemple en Python d’une fonction qui calcule n! de maniére itérative.

def factorielle2 (n):

f =1
for i in range (2, n+l):
f=f x 1i

return f

Il est important de savoir passer d’une fonction récursive a une fonction itérative utilisant une boucle
while ou une boucle for, et réciproquement.

Dans la fonction récursive, la derniere instruction est une multiplication par n qui ne peut étre effec-
tuée qu’apres avoir obtenu la valeur renvoyée par I’appel récursif. Les différentes multiplications sont donc
mises en attente.

La fonction peut étre modifiée en utilisant un parametre supplémentaire, un accumulateur, par lequel
des informations sont passées dans les appels récursifs. On munit ainsi la fonction d’un peu de mémoire.
C’est ’accumulateur qui est renvoyé lorsque la condition d’arrét des appels récursifs est satisfaite. Il doit
donc contenir le résultat.

def factorielle3(n, acc):
if n > 0:
return factorielled4 (n—-1, acc+n)
else
return acc

Cette fonction renvoie la valeur de acc x nl. Donc factorielle3 (n, 1) apour valeur n!. Elle
peut s’interpréter plus facilement comme une fonction itérative avec une boucle while. Il n’y a aucune
opération en attente hormis les appels récursifs.

Terminaison et correction

De maniere générale, la terminaison d’une fonction récursive est assurée par la condition d’arrét des
appels récursifs et les valeurs passées en parametres constituant une suite qui converge en un nombre
fini d’étapes vers une valeur satisfaisant la condition d’arrét. La correction se démontre a 1’aide d’un
raisonnement « par récurrence ». On vérifie qu'une propriété est vraie pour une valeur entiere initiale puis
on prouve que la propriété est héréditaire. Une propriété est héréditaire si la véracité pour un entier n
quelconque entraine la véracité pour I’entier suivant n + 1.

Prouvons que factorielle3 (n, acc) vautacc X n! pour tout entier n.

» Initialisation
Pour n = 0, factorielle3 (0, acc) vaut acc, soit acc x 0!. La propriété est donc vraie
pour n = 0.

» Hérédité
Nous supposons que la propriété est vraie pour un entier n quelconque, c’est-a-dire que
factorielle3 (n, acc) vautacc x nl.
Alors factorielle3 (n+l, acc) vautfactorielle3 (n, accx (n+l)).D’apres’hy-
pothese, cette valeur est acc x(n + 1) x n!. Donc factorielle3 (n+l, acc) vaut acc
X (n 4 1)! et la propriété est vraie pour n + 1.

Serge Bays 2 Lycée Les Eucalyptus

Informatique en PCSI

La propriété est donc démontrée pour tout entier n.

Deuxieme exemple

Dans les exemples précédents, le corps de la fonction récursive ne contient qu’'un seul appel récursif.
Mais il y a des cas ou le corps de la fonction contient deux appels récursifs ou plus.

Considérons la suite de Fibonacci. Il s’agit d’une suite d’entiers naturels définie par récurrence.

Les deux premiers termes sont O et 1, puis un terme est la somme des deux termes précédents. On
obtient ainsi la suite de nombres O, 1, 1, 2, 3, 5, 8, 13, 21, ...

La définition mathématique est: fo =0, fi =1 et fr, = frn_1 + fn_o pourn > 1.

Le n-iéme terme peut se calculer avec n — 2 additions. On peut donc écrire une fonction, utilisant une
boucle while ou une boucle for, qui prend en parametre un entier n et renvoie le terme f,,. Exemple
avec une boucle for :

def fibol (n) :

u, v =0, 1
for i in range(n):
u, v =v, u + v

return u

Pour écrire une version récursive, il suffit de « traduire » la formule de calcul.

def fibo2 (n) :
if n == 0 or n == 1:
return n
else:
return fibo2(n-1) + fibo2 (n-2)

Cette version récursive est clairement moins efficace que la version itérative. En effet, le nombre
d’appels récursifs est « presque multiplié par deux » chaque fois qu’on augmente n d’une unité. Il suffit
de constater que 230 ~ 10, pour conclure qu’avec des valeurs supérieures a 30, le calcul devient lent, et
stirement trop long pour des valeurs supérieures a 40.

Il est intéressant d’effectuer des tests dans I’interpréteur Python avec différentes valeurs a partir de
35. On peut arréter 1’exécution avec « ctrl+C » si I’attente est trop longue !

Validité de I’algorithme
Prouvons que la valeur de fibo2 (n) est bien celle du nombre de Fibonacci f,, pour tout n € N.
» Initialisation
Pour n = 0, £ibo2 (0) vaut 0, et pour n = 1, £ibo2 (1) vaut 1. La propriété est donc vraie
pour n = 0 et pour n = 1.
» Hérédité
Supposons que pour un entier k£ quelconque £ibo2 (k) vaut fi et fibo2 (k+1) vaut fri1,
alors : £ibo2 (k+2) vaut fibo2 (k+1) + £ibo2 (k),soit fr+1+ fr €gala frio. La propriété
est donc vraie pour k + 2.
Nous pouvons conclure que la propriété est vraie pour tout entier naturel n.

On peut transformer cette fonction récursive comme cela a été fait pour factorielle. Il convient
ici d’ajouter deux accumulateurs dans les parametres. Avec des valeurs par défaut, ’appel initial de la
fonction est plus simple. On obtient alors, par exemple, le nombre f300 sans souci.

Serge Bays 3 Lycée Les Eucalyptus

Informatique en PCSI

def fibo3(n, a=0, b=1l):
if == 0:
return a
else:
return fibo3(n-1, b, a+b)

Coiit d’un algorithme récursif

Le colit en temps d’un algorithme récursif est 1ié au nombre d’appels récursifs en fonction de n
représentant le nombre ou la taille de 1’objet en entrée. Ce cofit peut généralement s’exprimer par une
relation de récurrence et il n’est pas souvent facile a obtenir de manicre exacte.

Prenons I’exemple de la fonction factorielle. Nous notons ¢, le coilit en fonction de n et nous
comptons le nombre de tests et d’opérations arithmétiques.

Pour n = 0, nous avons un test, soit ¢cg = 1.

Pour n > 0, nous avons un test, une multiplication et I’appel de la fonction effectué avec le parametre
n —1,soit ¢, =24 ¢,—1 (ouc, =3+ ¢,—1 si nous comptons aussi 1’appel).

Les nombres c¢,, pour n entier naturel constituent ce qu’on appelle en mathématiques une suite arith-
métique : 1, 3, 5, ...On montre que si v, = u,—1 + 7, alors u,, = r X n + ug. Nous obtenons donc
cn = 2n + 1.

Le cofit de la fonction factorielle est linéaire en .

Plus précisément, pour tout n, nous avons n appels récursifs, n multiplications et n + 1 tests.

De maniere générale, si le programme a un cofit constant cy lorsque la condition d’arrét est satisfaite
et si ¢, est de la forme c¢,_1 + k ou k est le cofit constant des opérations effectuées en dehors de 1’appel
récursif, alors on obtient pour tout n, ¢, = kn + ¢y, donc un cofit linéaire.

Le cofit de la fonction £ibo2 pour le calcul des nombres de Fibonacci est plus complexe.

Les calculs du nombre d’additions, du nombre de tests et du nombre d’appels récursifs sont faits
séparément.

Soit a,, le nombre d’additions pour obtenir f,, alors a, = a,—1 + 1 4+ a,—_2. On ajoute 1 des deux
cotés de I'égalité : a, + 1 = ap_1+ 1+ ap—o + 1.

On pose alors b, = a,+1, eton obtient : b, = b,,_1+b,_o,avecby = ag+1=1etby =a;+1=1.

Nous constatons alors que b, = fp+1 et donc a, = f,+1 — 1. Par exemple, pour calculer f5 le
nombre d’additions a effectuer est fg — 1 = 7.

Pour une addition, nous avons deux appels récursifs. Le nombre d’appels récursifs pour obtenir f,
est donc 2f,, 11 — 2. Par exemple pour calculer f5, nous appelons la fonction £ibo2 qui procede a 14
appels récursifs. Le nombre de tests est égal au nombre d’appels de la fonction £ibo?2, soit 2f,+1 — 1.
Nous comptons un test pour 1’appel initial et un test pour chaque appel récursif. Pour calculer f5, nous
procédons donc a 15 tests.

En conclusion, le cofit du calcul de f,, en terme de nombre d’additions, de tests et d’appels récursif
est 5f,4+1 — 4. Or, on démontre en mathématiques que le nombre f, est égal a ’entier le plus proche de

n
1 (145 . R . .
— | —=—— | . Nous disons que le coiit en fonction de n est exponentiel.

NAUE

Lorsqu’un calcul exact du cofit n’est pas possible, il faut envisager d’établir un encadrement.

Lien avec les piles

Il existe deux types de structures linéaires courantes en informatique, les files et les piles. Pour parler
de la structure de file, on peut penser a une file d’attente comme dans une boulangerie : premier entré,

Serge Bays 4 Lycée Les Eucalyptus

Informatique en PCSI

premier sorti! Pour une pile, on peut penser a une pile de livres déposés sur une table. On peut prendre un
livre sur la pile et le déposer ailleurs, par exemple sur une autre pile. Les livres ne sont manipulés qu’un
par un : dernier entré, premier sorti.

On considere a nouveau la fonction récursive factorielle. Pour son exécution, les instructions
en attente sont placées dans une pile. Exemple avec factorielle (3) :
» nvaut 3 : empilement de return n * factorielle(n-1);
» nvaut2:empilement de return n * factorielle(n-1);
» nvaut 1 :empilement de return n » factorielle(n-1).
Ensuite n vaut O donc renvoi de factorielle (0) : return 1.

Les instructions sont alors retirées de la pile et les produits sont effectués.
» nvautl : return 1;
» nvaut2 : return 2;
» nvaut3: return 6.
Les produits sont effectués ainsi : 3 x (2 x (1 x 1)).
En notation polonaise inverse, I’expression s’écrit : 3 2 1 1 x X x et se lit de gauche a droite.
Cela revient a empiler tous les opérandes. Puis a chaque signe d’opération, on dépile deux opérandes, on
effectue 1’opération et on empile le résultat. A la fin, on dépile le résultat.

En Python le nombre d’appels récursifs en attente est limité. Par défaut, cette limite est de I’ordre du
millier d’appels. S’il y a un dépassement, un message d’erreur est affiché, et le programme ne termine pas :
"RuntimeError : maximum recursion depth exceeded in comparison". Nous pouvons modifier le nombre
maximal d’appels récursifs avec les instructions : import sys,puis sys.setrecursionlimit (5000)
(par exemple). Ce nombre maximal doit rester raisonnable.

Permutations et parties d’un ensemble fini

Génération des permutations d’un ensemble fini

def permute (liste, ind, resultats):
"""les éléments d’indice 0 a ind-1 sont fixés,
les autres sont permutés,
resultats contient les différentes permutations"""
if ind == len(liste)-1: #cas liste vide
resultats.append(list (liste))
else:
for i in range(ind, len(liste)):
liste[i], liste[ind] = liste[ind], listel[i]
permute (liste, ind+1l, resultats)
liste[i], liste[ind] = liste[ind], listel[i]

def permutations (L) :
res = []
permute (L, 0, res)
return res

On peut tester dans I'interpréteur Python avec ensemble = ["a’, 'b’, ’'c’].

>>> permutations (ensemble)
[[IaI, IbI’ ICI]’ [IaI, ,C,, Ibl], [IbI, IaI, Icl], [IbI’ ,C,, Ial]’
[’C’, IbI, Ial], [ICI, Ial, Ibl]]

Serge Bays 5 Lycée Les Eucalyptus

Informatique en PCSI

Génération des parties d’un ensemble fini

On distingue un élément, par exemple le dernier. Une partie contient ou pas cet élément.

def parties(liste, resultats):
"""énumere les parties de liste"""
n = len(liste)
if n ==
resultats.append ([])

else:
sousliste = liste[0:n-1]
parties (sousliste, resultats) #sans le dernier élément
for k in range (len(resultats)): #avec le dernier élément

partie = resultats[k] + [liste[n-11]]
resultats.append(partie)

def ens_parties(ensemble) :
rep = []
parties (ensemble, rep)
return rep

On teste la fonction avec ensemble = [1, 2, 3, 4]:

>>> ens_parties (ensemble)
ce1, (11, (21, 2, 21, (31, (1, 31, (2, 31, (1, 2, 3], (41, [1, 4],
(2, 41, I, 2, 41, I3, 41, [1, 3, 41, [2, 3, 41, [1, 2, 3, 4]]

Serge Bays 6 Lycée Les Eucalyptus

