
Informatique en PCSI

Informatique PCSI

Prérequis TP 5 : algorithmes récursifs

Algorithmes dichotomiques

Recherche dichotomique

Le programme qui suit est une traduction en récursif du programme itératif vu au TP 4. Son coût est
du même ordre que celui de l’algorithme itératif. La terminaison se démontre comme pour l’algorithme
itératif en étudiant les valeurs successives des expressions d-g, d et g étant ici des paramètres de la
fonction récursive. La liste passée en paramètre est supposée non vide.

def dicho_rec(liste, x, g, d):

if g == d:

return liste[g] == x

m = (g + d) // 2

if x == liste[m]:

return True

elif x < liste[m]:

if g == m:

return False

else:

return dicho_rec(liste, x, g, m-1)

else:

return dicho_rec(liste, x, m+1, d)

On utilise la fonction avec un premier appel dicho_rec(lst, x, 0, len(lst)-1). À chaque
appel récursif, l’un des deux paramètres g ou d est modifié.

Exemples classiques

Premier exemple

L’un des exemples les plus classiques est une fonction mathématique, la fonction factorielle. On dit
« factorielle n » et on note avec un point d’exclamation n!.

Cette fonction est définie « par récurrence » sur les entiers naturels : 0! = 1 et pour tout entier naturel
n non nul, n! = n× (n − 1)!

Autrement dit, pour tout n non nul, n! = n× (n− 1)× (n− 2)× . . .× 2× 1.

Dans l’écriture 0! = 1 et n! = n × (n − 1)! pour n non nul, nous voyons les deux aspects d’une
fonction récursive : un cas simple qui correspond à la condition d’arrêt et un cas complexe, celui de l’appel
récursif pour obtenir la valeur de (n− 1)! afin de calculer n!.

L’écriture d’une fonction récursive consiste à traduire la définition mathématique.

def factorielle(n):

""" n est de type int positif

renvoie n!"""

if n > 0:

return n * factorielle(n-1)

else:

return 1

Serge Bays 1 Lycée Les Eucalyptus



Informatique en PCSI

La condition n > 0 au début de l’exécution de la fonction sert à déterminer s’il faut procéder à un
appel récursif ou pas. Dès que la valeur de n est négative ou nulle, la valeur 1 est renvoyée. À cet effet, les
valeurs passées en paramètres lors des appels récursifs constituent une suite décroissante qui en n étapes
prend une valeur nulle si n est un entier positif.

Voici un exemple en Python d’une fonction qui calcule n! de manière itérative.

def factorielle2(n):

f = 1

for i in range(2, n+1):

f = f * i

return f

Il est important de savoir passer d’une fonction récursive à une fonction itérative utilisant une boucle
while ou une boucle for, et réciproquement.

Dans la fonction récursive, la dernière instruction est une multiplication par n qui ne peut être effec-
tuée qu’après avoir obtenu la valeur renvoyée par l’appel récursif. Les différentes multiplications sont donc
mises en attente.

La fonction peut être modifiée en utilisant un paramètre supplémentaire, un accumulateur, par lequel
des informations sont passées dans les appels récursifs. On munit ainsi la fonction d’un peu de mémoire.
C’est l’accumulateur qui est renvoyé lorsque la condition d’arrêt des appels récursifs est satisfaite. Il doit
donc contenir le résultat.

def factorielle3(n, acc):

if n > 0:

return factorielle4(n-1, acc*n)

else

return acc

Cette fonction renvoie la valeur de acc× n!. Donc factorielle3(n, 1) a pour valeur n!. Elle
peut s’interpréter plus facilement comme une fonction itérative avec une boucle while. Il n’y a aucune
opération en attente hormis les appels récursifs.

Terminaison et correction

De manière générale, la terminaison d’une fonction récursive est assurée par la condition d’arrêt des
appels récursifs et les valeurs passées en paramètres constituant une suite qui converge en un nombre
fini d’étapes vers une valeur satisfaisant la condition d’arrêt. La correction se démontre à l’aide d’un
raisonnement « par récurrence ». On vérifie qu’une propriété est vraie pour une valeur entière initiale puis
on prouve que la propriété est héréditaire. Une propriété est héréditaire si la véracité pour un entier n

quelconque entraîne la véracité pour l’entier suivant n+ 1.

Prouvons que factorielle3(n, acc) vaut acc × n! pour tout entier n.
◮ Initialisation

Pour n = 0, factorielle3(0, acc) vaut acc, soit acc × 0!. La propriété est donc vraie
pour n = 0.

◮ Hérédité
Nous supposons que la propriété est vraie pour un entier n quelconque, c’est-à-dire que
factorielle3(n, acc) vaut acc × n!.
Alors factorielle3(n+1, acc) vaut factorielle3(n, acc*(n+1)). D’après l’hy-
pothèse, cette valeur est acc ×(n + 1) × n! . Donc factorielle3(n+1, acc) vaut acc
×(n+ 1)! et la propriété est vraie pour n+ 1.

Serge Bays 2 Lycée Les Eucalyptus



Informatique en PCSI

La propriété est donc démontrée pour tout entier n.

Deuxième exemple

Dans les exemples précédents, le corps de la fonction récursive ne contient qu’un seul appel récursif.
Mais il y a des cas où le corps de la fonction contient deux appels récursifs ou plus.

Considérons la suite de Fibonacci. Il s’agit d’une suite d’entiers naturels définie par récurrence.
Les deux premiers termes sont 0 et 1, puis un terme est la somme des deux termes précédents. On

obtient ainsi la suite de nombres 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .
La définition mathématique est : f0 = 0, f1 = 1 et fn = fn−1 + fn−2 pour n > 1.
Le n-ième terme peut se calculer avec n−2 additions. On peut donc écrire une fonction, utilisant une

boucle while ou une boucle for, qui prend en paramètre un entier n et renvoie le terme fn. Exemple
avec une boucle for :

def fibo1(n):

u, v = 0, 1

for i in range(n):

u, v = v, u + v

return u

Pour écrire une version récursive, il suffit de « traduire » la formule de calcul.

def fibo2(n):

if n == 0 or n == 1:

return n

else:

return fibo2(n-1) + fibo2(n-2)

Cette version récursive est clairement moins efficace que la version itérative. En effet, le nombre
d’appels récursifs est « presque multiplié par deux » chaque fois qu’on augmente n d’une unité. Il suffit
de constater que 230 ≃ 109, pour conclure qu’avec des valeurs supérieures à 30, le calcul devient lent, et
sûrement trop long pour des valeurs supérieures à 40.

Il est intéressant d’effectuer des tests dans l’interpréteur Python avec différentes valeurs à partir de
35. On peut arrêter l’exécution avec « ctrl+C » si l’attente est trop longue!

Validité de l’algorithme

Prouvons que la valeur de fibo2(n) est bien celle du nombre de Fibonacci fn pour tout n ∈ N.
◮ Initialisation

Pour n = 0, fibo2(0) vaut 0, et pour n = 1, fibo2(1) vaut 1. La propriété est donc vraie
pour n = 0 et pour n = 1.

◮ Hérédité
Supposons que pour un entier k quelconque fibo2(k) vaut fk et fibo2(k+1) vaut fk+1,
alors : fibo2(k+2) vaut fibo2(k+1)+ fibo2(k), soit fk+1+fk égal à fk+2. La propriété
est donc vraie pour k + 2.

Nous pouvons conclure que la propriété est vraie pour tout entier naturel n.

On peut transformer cette fonction récursive comme cela a été fait pour factorielle. Il convient
ici d’ajouter deux accumulateurs dans les paramètres. Avec des valeurs par défaut, l’appel initial de la
fonction est plus simple. On obtient alors, par exemple, le nombre f300 sans souci.

Serge Bays 3 Lycée Les Eucalyptus



Informatique en PCSI

def fibo3(n, a=0, b=1):

if n == 0:

return a

else:

return fibo3(n-1, b, a+b)

Coût d’un algorithme récursif

Le coût en temps d’un algorithme récursif est lié au nombre d’appels récursifs en fonction de n

représentant le nombre ou la taille de l’objet en entrée. Ce coût peut généralement s’exprimer par une
relation de récurrence et il n’est pas souvent facile à obtenir de manière exacte.

Prenons l’exemple de la fonction factorielle. Nous notons cn le coût en fonction de n et nous
comptons le nombre de tests et d’opérations arithmétiques.

Pour n = 0, nous avons un test, soit c0 = 1.
Pour n > 0, nous avons un test, une multiplication et l’appel de la fonction effectué avec le paramètre

n− 1, soit cn = 2 + cn−1 (ou cn = 3 + cn−1 si nous comptons aussi l’appel).
Les nombres cn pour n entier naturel constituent ce qu’on appelle en mathématiques une suite arith-

métique : 1, 3, 5, . . . On montre que si un = un−1 + r, alors un = r × n + u0. Nous obtenons donc
cn = 2n + 1.

Le coût de la fonction factorielle est linéaire en n.
Plus précisément, pour tout n, nous avons n appels récursifs, n multiplications et n+ 1 tests.

De manière générale, si le programme a un coût constant c0 lorsque la condition d’arrêt est satisfaite
et si cn est de la forme cn−1 + k où k est le coût constant des opérations effectuées en dehors de l’appel
récursif, alors on obtient pour tout n, cn = kn+ c0, donc un coût linéaire.

Le coût de la fonction fibo2 pour le calcul des nombres de Fibonacci est plus complexe.
Les calculs du nombre d’additions, du nombre de tests et du nombre d’appels récursifs sont faits

séparément.
Soit an le nombre d’additions pour obtenir fn, alors an = an−1 + 1 + an−2. On ajoute 1 des deux

côtés de l’égalité : an + 1 = an−1 + 1 + an−2 + 1.
On pose alors bn = an+1, et on obtient : bn = bn−1+bn−2, avec b0 = a0+1 = 1 et b1 = a1+1 = 1.
Nous constatons alors que bn = fn+1 et donc an = fn+1 − 1. Par exemple, pour calculer f5 le

nombre d’additions à effectuer est f6 − 1 = 7.

Pour une addition, nous avons deux appels récursifs. Le nombre d’appels récursifs pour obtenir fn
est donc 2fn+1 − 2. Par exemple pour calculer f5, nous appelons la fonction fibo2 qui procède à 14
appels récursifs. Le nombre de tests est égal au nombre d’appels de la fonction fibo2, soit 2fn+1 − 1.
Nous comptons un test pour l’appel initial et un test pour chaque appel récursif. Pour calculer f5, nous
procédons donc à 15 tests.

En conclusion, le coût du calcul de fn en terme de nombre d’additions, de tests et d’appels récursif
est 5fn+1 − 4. Or, on démontre en mathématiques que le nombre fn est égal à l’entier le plus proche de
1
√
5

(

1 +
√
5

2

)n

. Nous disons que le coût en fonction de n est exponentiel.

Lorsqu’un calcul exact du coût n’est pas possible, il faut envisager d’établir un encadrement.

Lien avec les piles

Il existe deux types de structures linéaires courantes en informatique, les files et les piles. Pour parler
de la structure de file, on peut penser à une file d’attente comme dans une boulangerie : premier entré,

Serge Bays 4 Lycée Les Eucalyptus



Informatique en PCSI

premier sorti ! Pour une pile, on peut penser à une pile de livres déposés sur une table. On peut prendre un
livre sur la pile et le déposer ailleurs, par exemple sur une autre pile. Les livres ne sont manipulés qu’un
par un : dernier entré, premier sorti.

On considère à nouveau la fonction récursive factorielle. Pour son exécution, les instructions
en attente sont placées dans une pile. Exemple avec factorielle(3) :

◮ n vaut 3 : empilement de return n * factorielle(n-1) ;
◮ n vaut 2 : empilement de return n * factorielle(n-1) ;
◮ n vaut 1 : empilement de return n * factorielle(n-1).

Ensuite n vaut 0 donc renvoi de factorielle(0) : return 1.

Les instructions sont alors retirées de la pile et les produits sont effectués.
◮ n vaut 1 : return 1 ;
◮ n vaut 2 : return 2 ;
◮ n vaut 3 : return 6.

Les produits sont effectués ainsi : 3× (2× (1× 1)).
En notation polonaise inverse, l’expression s’écrit : 3 2 1 1 × × × et se lit de gauche à droite.

Cela revient à empiler tous les opérandes. Puis à chaque signe d’opération, on dépile deux opérandes, on
effectue l’opération et on empile le résultat. À la fin, on dépile le résultat.

En Python le nombre d’appels récursifs en attente est limité. Par défaut, cette limite est de l’ordre du
millier d’appels. S’il y a un dépassement, un message d’erreur est affiché, et le programme ne termine pas :
"RuntimeError : maximum recursion depth exceeded in comparison". Nous pouvons modifier le nombre
maximal d’appels récursifs avec les instructions : import sys, puis sys.setrecursionlimit(5000)
(par exemple). Ce nombre maximal doit rester raisonnable.

Permutations et parties d’un ensemble fini

Génération des permutations d’un ensemble fini

def permute(liste, ind, resultats):

"""Les éléments d’indice 0 à ind-1 sont fixés,

les autres sont permutés,

resultats contient les différentes permutations"""

if ind == len(liste)-1: #cas liste vide

resultats.append(list(liste))

else:

for i in range(ind, len(liste)):

liste[i], liste[ind] = liste[ind], liste[i]

permute(liste, ind+1, resultats)

liste[i], liste[ind] = liste[ind], liste[i]

def permutations(L):

res = []

permute(L, 0, res)

return res

On peut tester dans l’interpréteur Python avec ensemble = [’a’, ’b’, ’c’].

>>> permutations(ensemble)

[[’a’, ’b’, ’c’], [’a’, ’c’, ’b’], [’b’, ’a’, ’c’], [’b’, ’c’, ’a’],

[’c’, ’b’, ’a’], [’c’, ’a’, ’b’]]

Serge Bays 5 Lycée Les Eucalyptus



Informatique en PCSI

Génération des parties d’un ensemble fini

On distingue un élément, par exemple le dernier. Une partie contient ou pas cet élément.

def parties(liste, resultats):

"""énumère les parties de liste"""

n = len(liste)

if n == 0:

resultats.append([])

else:

sousliste = liste[0:n-1]

parties(sousliste, resultats) #sans le dernier élément

for k in range(len(resultats)): #avec le dernier élément

partie = resultats[k] + [liste[n-1]]

resultats.append(partie)

def ens_parties(ensemble):

rep = []

parties(ensemble, rep)

return rep

On teste la fonction avec ensemble = [1, 2, 3, 4] :

>>> ens_parties(ensemble)

[[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3], [4], [1, 4],

[2, 4], [1, 2, 4], [3, 4], [1, 3, 4], [2, 3, 4], [1, 2, 3, 4]]

Serge Bays 6 Lycée Les Eucalyptus


