Informatique en PCSI

Informatique PCSI
Prérequis TP 4 : algorithmes dichotomiques

Exponentiation rapide

Il s’agit d’écrire une fonction puissance qui prend en parametres un flottant z non nul et un entier
naturel n et qui renvoie x"™.

Dans une version naive, on calcule successivement z2, z°, etc, en se basant sur la définition mathé-
matique : pour n > 0, 2" =1 X x X ... X x ou n est le nombre de facteur égaux a x.

def puissancel (x, n):

p=1
for i in range(n):
p=p *x X

return p

La fonction puissancel effectue n produits et n 4 1 affectations. La complexité est donc linéaire
en fonction de n.

Remarque

Dans le calcul du cofit, un autre facteur ne doit pas étre négligé, la taille de x. En Python, il n’y a pas
de limite de taille pour les entiers. Donc si x est de type int, le temps de calcul peut étre nettement allongé
selon la taille de x.

Méthode dichotomique
Pour tout 7, si n est pair, " = (22)"//2, sinon 2" = z(z%)"//2, ot n/ /2 désigne le quotient entier
de n par 2.
Nous en déduisons 1’algorithme suivant :
» pvautl
» Tant que n//2 n’est pas nul
» sin estimpair nous remplacons p par px
» nous remplagons x par 22 et n par n//2.

Le principe d’un algorithme dichotomique est de diviser un probleme en deux sous-probléemes.

def puissance2 (x, n):

p =1
while n != 0:
ifn% 2:
p=p * X
X = X * X
n=mn// 2

return p

Complexité logarithmique.
Considérons I’écriture binaire de n (des précisions sont données au chapitre 11).

Serge Bays 1 Lycée Les Eucalyptus



Informatique en PCSI

k
n=ng+ny X2+ng X 22+...+nk x 2k — Znﬂi,avecpourtoutz’, n; égalaloual.
. i=0
Nous pouvons alors écrire : 2" = g im0 = gno (zH)™ (9022)"2 . (ka)"k
Dans le cas le moins favorable, nous pouvons considérer que nous avons de 1’ordre de 4k opérations
a effectuer, ou k& est le nombre de chiffres dans 1’écriture binaire de n, soit environ log,(n) opérations (k
multiplications, k élévations au carré, et k calculs de quotient et de reste).

Le logarithme en base b d’un nombre entier n est de 1’ordre du nombre de chiffres dans I’écriture en
base b de n.

Si ¢19(n) est le nombre de chiffres dans 1’écriture décimale de n, alors nous pouvons en déduire que
c10(n) — 1 <logyg(n) < c1p(n), soitlog;o(n) < c10(n) < logy(n) + 1.

Si ca(n) est le nombre de chiffres dans 1’écriture binaire de n, alors nous pouvons en déduire que
ca(n) — 1 <logy(n) < ca(n), soit logy(n) < ca(n) < logy(n) + 1.

Concaténation de chaines

On donne une liste de n chaines de caractéres, chacune de longueur p. L’objectif est d’écrire une
fonction qui renvoie la chaine obtenue par concaténation des n chaines et d’étudier sa complexité en
fonction de n et de p. Pour cette étude nous considérons qu’une chaine est lue et écrite en mémoire caractere
par caractere, qu’il n’y a pas plus de lectures que d’écritures et donc que les opérations élémentaires a
compter sont uniquement les écritures de caracteres. On suppose enfin que I’affectation chl = chl +
ch2, nécessite de réécrire en mémoire les caracteres de la chaine chl suivis des caracteres de la chaine
ch2.

» ler cas : les n chaines sont identiques de longueur p.
En Python, on peut utiliser 1’opérateur .

def concatl (liste):
return n x* liste[0]

La longueur de la chaine renvoyée est prévisible, c’est n x p.

La fonction écrit les caracteres de la chaine 1iste [0] I'un apres I’autre, n fois a la suite. Le nombre
d’écritures est donc p X n.

Il est clair qu’on peut difficilement faire mieux.

» 2e cas : les n chaines sont distinctes.
En Python, on peut utiliser 1’opérateur +.

def concat2 (liste):

ch =77
for chaine in liste:
ch = ch + chaine

return ch

A chaque passage dans la boucle, pour concaténer ch et chaine, tous les caractéres de la valeur
courante de ch sont écrits. La premiére chaine de la liste est donc écrite n fois, la deuxieme n — 1 fois,
etc, jusqu’a la derniere écrite une fois. Le nombre total d’écritures est donc pn + p(n — 1) + ... +p =
pn(n + 1)/2. Le cofit est donc de I’ordre de p x n?/2. Ceci signifie une complexité quadratique.

Peut-on étre plus efficace ? Il apparait que pour certains algorithmes, on peut passer d’un cofit linéaire
a un coflit logarithmique en utilisant une méthode par dichotomie.

Serge Bays 2 Lycée Les Eucalyptus



Informatique en PCSI

Cela signifie que I’on coupe la liste en deux parties de méme longueur a une unité pres. On concatene
les chaines de la premiere moitié, les chaines de la deuxieéme moitié, puis on concatene les deux résultats.
Pour concaténer les chaines de chaque partie, on recommencent la procédure avec chaque partie, et ainsi
de suite.

Cette procédure décrit une approche dite descendante qui peut étre programmée de maniere récursive
(voir TP 5). L’algorithme programmé ci-dessous suit une approche dite ascendante. Les chaines consécu-
tives de la liste sont concaténées deux par deux. Nous avons donc n//2 concaténations de deux chaines de
longueur p. La derniére chaine si elle est seule est ajoutée a cette liste. On recommence alors I’opération
avec n/ /4 concaténations de deux chaines de longueur 2p, et on continue ce processus jusqu’a obtenir une
seule chaine de longueur np.

Les concaténations au niveau 1 cofitent 2p X n/2 = p X n opérations.

Les concaténations au niveau 2 coiitent 4p x n/4 = p x n opérations.

Et ainsi de suite. Le nombre de niveaux étant environ log,(n), le nombre total d’opérations est de
I’ordre de p x nlogy(n).

Nous pouvons donc envisager une complexité de I’ordre de p x nlogy(n).

Pour simplifier I’écriture du programme proposé ci-dessous, on suppose que la taille de la liste est
une puissance de 2. La variable taille représente la longueur des chaines a concaténer divisée par p.

def concat3(liste):

n = len(liste)

taille =1

while taille < n:
for g in range (0, n-taille, 2xtaille):

liste[g] = liste[g] + liste[gt+taille]

taille = 2 % taille

return liste[0]

Remarques

— Les chaines créées sont nombreuses et il apparait ici une autre forme de cofit, que I’on appelle
un cofit en espace. En effet ces chalnes occupent de I’espace en mémoire et cet espace doit étre
évalué dans certains cas.

— On obtiendrait le méme type de résultat en remplacant les chaines par des listes. Mais Python
propose des méthodes plus efficaces, liées au caractere mutable des listes. Par exemple, il faut
éviter d’écrire la concaténation 1st = lst + [elt] etutiliser plutdt 1st.append(elt).

Serge Bays 3 Lycée Les Eucalyptus



