
Informatique en PCSI

Informatique PCSI

Prérequis TP 4 : algorithmes dichotomiques

Exponentiation rapide

Il s’agit d’écrire une fonction puissance qui prend en paramètres un flottant x non nul et un entier
naturel n et qui renvoie xn.

Dans une version naïve, on calcule successivement x2, x3, etc, en se basant sur la définition mathé-
matique : pour n ≥ 0, xn = 1× x× . . .× x où n est le nombre de facteur égaux à x.

def puissance1(x, n):

p = 1

for i in range(n):

p = p * x

return p

La fonction puissance1 effectue n produits et n+ 1 affectations. La complexité est donc linéaire
en fonction de n.

Remarque

Dans le calcul du coût, un autre facteur ne doit pas être négligé, la taille de x. En Python, il n’y a pas
de limite de taille pour les entiers. Donc si x est de type int, le temps de calcul peut être nettement allongé
selon la taille de x.

Méthode dichotomique

Pour tout n, si n est pair, xn = (x2)n//2, sinon xn = x(x2)n//2, où n//2 désigne le quotient entier
de n par 2.

Nous en déduisons l’algorithme suivant :
◮ p vaut 1
◮ Tant que n//2 n’est pas nul

◮ si n est impair nous remplaçons p par px
◮ nous remplaçons x par x2 et n par n//2.

Le principe d’un algorithme dichotomique est de diviser un problème en deux sous-problèmes.

def puissance2(x, n):

p = 1

while n != 0:

if n % 2:

p = p * x

x = x * x

n = n // 2

return p

Complexité logarithmique.
Considérons l’écriture binaire de n (des précisions sont données au chapitre 11).

Serge Bays 1 Lycée Les Eucalyptus



Informatique en PCSI

n = n0 + n1 × 2 + n2 × 22 + . . . + nk × 2k =

k∑

i=0

ni2
i, avec pour tout i, ni égal à 0 ou à 1.

Nous pouvons alors écrire : xn = x
∑

k

i=0
ni2

i

= xn0(x2)n1(x2
2

)n2 . . . (x2
k

)nk .
Dans le cas le moins favorable, nous pouvons considérer que nous avons de l’ordre de 4k opérations

à effectuer, où k est le nombre de chiffres dans l’écriture binaire de n, soit environ log2(n) opérations (k
multiplications, k élévations au carré, et k calculs de quotient et de reste).

Le logarithme en base b d’un nombre entier n est de l’ordre du nombre de chiffres dans l’écriture en
base b de n.

Si c10(n) est le nombre de chiffres dans l’écriture décimale de n, alors nous pouvons en déduire que
c10(n)− 1 ≤ log10(n) < c10(n), soit log10(n) < c10(n) ≤ log10(n) + 1.

Si c2(n) est le nombre de chiffres dans l’écriture binaire de n, alors nous pouvons en déduire que
c2(n)− 1 ≤ log2(n) < c2(n), soit log2(n) < c2(n) ≤ log2(n) + 1.

Concaténation de chaînes

On donne une liste de n chaines de caractères, chacune de longueur p. L’objectif est d’écrire une
fonction qui renvoie la chaine obtenue par concaténation des n chaines et d’étudier sa complexité en
fonction de n et de p. Pour cette étude nous considérons qu’une chaîne est lue et écrite en mémoire caractère
par caractère, qu’il n’y a pas plus de lectures que d’écritures et donc que les opérations élémentaires à
compter sont uniquement les écritures de caractères. On suppose enfin que l’affectation ch1 = ch1 +

ch2, nécessite de réécrire en mémoire les caractères de la chaîne ch1 suivis des caractères de la chaîne
ch2.

◮ 1er cas : les n chaines sont identiques de longueur p.
En Python, on peut utiliser l’opérateur *.

def concat1(liste):

return n * liste[0]

La longueur de la chaîne renvoyée est prévisible, c’est n× p.
La fonction écrit les caractères de la chaîne liste[0] l’un après l’autre, n fois à la suite. Le nombre

d’écritures est donc p× n.
Il est clair qu’on peut difficilement faire mieux.

◮ 2e cas : les n chaines sont distinctes.
En Python, on peut utiliser l’opérateur +.

def concat2(liste):

ch = ’’

for chaine in liste:

ch = ch + chaine

return ch

À chaque passage dans la boucle, pour concaténer ch et chaine, tous les caractères de la valeur
courante de ch sont écrits. La première chaine de la liste est donc écrite n fois, la deuxième n − 1 fois,
etc, jusqu’à la dernière écrite une fois. Le nombre total d’écritures est donc pn + p(n − 1) + . . . + p =
pn(n+ 1)/2. Le coût est donc de l’ordre de p× n2/2. Ceci signifie une complexité quadratique.

Peut-on être plus efficace? Il apparaît que pour certains algorithmes, on peut passer d’un coût linéaire
à un coût logarithmique en utilisant une méthode par dichotomie.

Serge Bays 2 Lycée Les Eucalyptus



Informatique en PCSI

Cela signifie que l’on coupe la liste en deux parties de même longueur à une unité près. On concatène
les chaînes de la première moitié, les chaînes de la deuxième moitié, puis on concatène les deux résultats.
Pour concaténer les chaînes de chaque partie, on recommencent la procédure avec chaque partie, et ainsi
de suite.

Cette procédure décrit une approche dite descendante qui peut être programmée de manière récursive
(voir TP 5). L’algorithme programmé ci-dessous suit une approche dite ascendante. Les chaînes consécu-
tives de la liste sont concaténées deux par deux. Nous avons donc n//2 concaténations de deux chaînes de
longueur p. La dernière chaîne si elle est seule est ajoutée à cette liste. On recommence alors l’opération
avec n//4 concaténations de deux chaînes de longueur 2p, et on continue ce processus jusqu’à obtenir une
seule chaîne de longueur np.

Les concaténations au niveau 1 coûtent 2p × n/2 = p× n opérations.
Les concaténations au niveau 2 coûtent 4p × n/4 = p× n opérations.
Et ainsi de suite. Le nombre de niveaux étant environ log2(n), le nombre total d’opérations est de

l’ordre de p× n log2(n).
Nous pouvons donc envisager une complexité de l’ordre de p× n log2(n).

Pour simplifier l’écriture du programme proposé ci-dessous, on suppose que la taille de la liste est
une puissance de 2. La variable taille représente la longueur des chaînes à concaténer divisée par p.

def concat3(liste):

n = len(liste)

taille = 1

while taille < n:

for g in range(0, n-taille, 2*taille):

liste[g] = liste[g] + liste[g+taille]

taille = 2 * taille

return liste[0]

Remarques

— Les chaînes créées sont nombreuses et il apparaît ici une autre forme de coût, que l’on appelle
un coût en espace. En effet ces chaînes occupent de l’espace en mémoire et cet espace doit être
évalué dans certains cas.

— On obtiendrait le même type de résultat en remplaçant les chaînes par des listes. Mais Python
propose des méthodes plus efficaces, liées au caractère mutable des listes. Par exemple, il faut
éviter d’écrire la concaténation lst = lst + [elt] et utiliser plutôt lst.append(elt).

Serge Bays 3 Lycée Les Eucalyptus


