
Informatique en PCSI

Informatique PCSI

Les nombres entiers : représentation

1 Numérisation

Toutes les données utilisées dans une machine ont été numérisées, donc transformées en nombres
entiers. Le nombre 91 peut représenter l’entier 91. Mais il peut aussi représenter, (en suivant le code
ASCII), la lettre "a" ou une quantité de rouge dans une image en couleur. Numériser une information, c’est
la convertir en une suite de 0 et de 1. Cette suite représente de manière exacte ou approchée une donnée.

Ces nombres doivent être conservés en mémoire et manipulés. Il est important de comprendre com-
ment ces entiers sont représentés en machine et de distinguer cette représentation de celle utilisée par un
langage de programmation particulier.

Pour écrire des entiers, nous sommes habitués à utiliser une notation de position avec le système
décimal. Le zéro exprime le vide ou l’absence et permet de distinguer par exemple 35 de 305.

1.1 Représentation des nombres

Nous utilisons en permanence la notation positionnelle en base dix. Lorsque nous écrivons 357, que
nous lisons « trois-cent-cinquante-sept », c’est une simplification de l’écriture 3× 100 + 5× 10 + 7.

Cette notation est probablement née en Inde où elle était utilisée entre les années 600 et 700 dans des
opérations arithmétiques. Elle est arrivée en Perse, lorsque le mathématicien al-Khwarizmi a traduit les
chiffres en langue Arabe. Les traductions des ouvrages d’al-Khwarizmi en latin permettrons de répandre
cette notation en Europe à partir des années 1200.

Un entier naturel peut donc s’écrire cncn−1 . . . c1c0 = cn10
n + cn−110

n−1 + . . . + c110 + c0.
Avec la base dix, nous utilisons dix chiffres de 0 à 9. Il apparaît clairement que le rôle du zéro dans

l’écriture positionnelle est capital. Sinon, comment distinguer 270 de 27, ou 7803 de 783?

En suivant le même principe, nous pouvons envisager une notation positionnelle en base b, où b est
un entier quelconque avec b ≥ 2, en utilisant b chiffres, de 0 à b− 1.

(anan−1 . . . a1a0)b = anb
n + an−1b

n−1 + . . .+ a1b+ a0
Par exemple : (2301)4 = 2× 43 + 3× 42 + 0× 4 + 1 = 180.
Une difficulté apparaît si b > 10, puisque nous ne disposons que de 10 chiffres dans notre écriture.

En base seize par exemple, nous avons besoin de seize chiffres. Il a été choisi de compléter avec des lettres.
Ainsi, les chiffres de zéro à quinze sont habituellement notés 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Si b = 2, on obtient le système binaire. Les deux chiffres 0 et 1 sont appelés bits, mot qui vient de
l’anglais « binary digit ».

C’est le mathématicien Leibnitz qui est considéré à l’origine du développement du système binaire
pour lequel il a précisé comment calculer en particulier pour les quatre opérations de base.

Certains des premiers ordinateurs calculaient en utilisant l’arithmétique décimale. C’est à partir des
travaux de von Neumann dans les années 1940 que le calcul en binaire est devenu la norme.

1.2 Le binaire

L’utilisation du binaire a plusieurs raisons. Une première raison est qu’avec une machine utilisant des
circuits électroniques, il est plus simple et plus sûr de ne considérer que deux états dans l’observation de
ces circuits et donc de construire une machine qui n’utilise que deux symboles pour son fonctionnement.
À ces deux états correspondent les deux chiffres 0 et 1. Une deuxième raison est que ces deux états ou ces
deux chiffres peuvent correspondre aux deux valeurs d’une propriété, faux ou vrai, ce qui permet de faire
le lien entre l’arithmétique binaire et le calcul logique. Ainsi les variables qui ne peuvent prendre que deux
valeurs 0 ou 1 sont appelées des variables booléennes du nom du mathématicien britannique George Boole
qui a développé au XIXe une algèbre liée à la théorie des ensembles. Les trois opérations logiques addition,
multiplication et négation correspondant à la réunion, l’intersection et le complémentaire sur l’ensemble
des parties d’un ensemble de référence.

Serge Bays 1 Lycée Les Eucalyptus



Informatique en PCSI

Les valeurs 0 et 1 correspondent aussi aux valeurs de la fonction caractéristique d’une partie A d’un
ensemble E : KA(x) = 1 si x ∈ A et 0 sinon. Ainsi le produit de deux bits correspond à la conjonction de
deux valeurs booléennes et à l’intersection de deux parties.

Voici quelques remarques complémentaires qui militent pour le binaire.
En base deux, une multiplication est guère plus compliquée qu’une addition.
Le passage d’une base b = 2 à une base b = 2p est toujours simple. Cela consiste à regrouper les bits

par p bits. Par exemple, (anan−1 . . . a1a0)2 = (Aq . . . A1A0)22 avec Ak = a2k+1a2k.
Dans une addition en base b, les retenues éventuelles valent toujours un. Mais dans une multiplication

en base b, il y a b − 1 retenues possibles. En base deux, la seule retenue possible vaut 1 comme pour
l’addition.

Donc, que ce soit pour le fonctionnement de la machine ou pour la simplicité des calculs, le binaire
semble être un bon choix. Il permet de réaliser un lien entre la physique, le calcul numérique, la logique
booléenne et la théorie des ensembles.

1.3 Vocabulaire

Une suite composée de 0 et de 1 s’appelle un mot. Les chiffres 0 et 1 sont les lettres et l’ensemble
{0, 1} est l’alphabet. La taille d’un mot s’exprime en bits. Un mot de huit bits est un octet (ou byte). Un
mot est l’unité de base pour la machine ou le processeur. On compte en bits ou en octets. Avec seize bits,
soit deux octets, on parle de word, avec trente-deux bits, soit quatre octets, de dword (pour double word)
et avec soixante-quatre bits, soit huit octets, de qword (pour quadruple word). Suivant les architectures des
ordinateurs, la taille du mot ou du word change. Dans les machines récentes un word a une taille de 64 bits.
Dans les architectures plus anciennes un word a une taille de 32 bits.

Le type char, qui permet de représenter un caractère dans certains langages, utilise huit bits depuis
le début des années 1970 et les premiers processeurs Intel. Ce type permet de représenter 256 caractères
(256 = 28), en particulier ce que l’on trouve sur les touches d’un clavier usuel.

Note : en Python ord("a") vaut 91 et chr(91) vaut "a".

2 Entiers naturels

2.1 Mots de taille fixe

Nous avons l’habitude d’écrire des nombres comme 8, 17, 235, 7813. Si nous décidons d’utiliser
exactement quatre chiffres pour représenter un nombre, nous les écrivons 0008, 0017, 0235, 7813. Les
entiers naturels représentables avec quatre chiffres sont alors tous les nombres entiers allant de 0 (0000) à
9999, soit 104 = 10000 nombres.

La mémoire d’une machine ressemble à une feuille de papier quadrillées sur laquelle nous pouvons
écrire un chiffre 0 ou 1 dans chaque petit carré. Chaque carré est numéroté, c’est son adresse. Les machines
numériques n’utilisent que le binaire pour stocker des données sous forme de suites composées uniquement
de 0 et de 1. Nous pouvons écrire en binaire des nombres comme 1, 11, 101, 1011, soient 1, 3, 5, 11 en
décimal. Pour stocker ces nombres en machines il faudrait inscrire les chiffres de chaque nombre et pour
chaque nombre, son nombre de chiffres. Sinon il est impossible de savoir ce que représente 10111 écrit sur
une ligne de la feuille.

1 0 1 1 1

Ce sont les nombres 1011 et 1, les nombres 101 et 11? De plus si un nombre occupe deux cases et
que nous n’avons plus besoin de ce nombre, nous pouvons l’effacer mais nous ne disposons que de deux
cases contigües pour écrire un nouveau nombre. Il est donc plus efficace de décider que tous les nombres
sont stockés avec exactement le même nombre de chiffres. Par exemple si nous décidons d’utiliser des
mots de taille quatre bits, alors 1, 3, 5, 11 s’écrivent respectivement 0001, 0011, 0101, 1011. Et nous avons
ci-dessous les nombres 1011 et 0001 sans ambigüité possible.

1 0 1 1 0 0 0 1

Serge Bays 2 Lycée Les Eucalyptus



Informatique en PCSI

Avec quatre bits, nous pouvons écrire seulement 24 = 16 nombres. Avec un octet, nous pouvons
représenter 28 = 256 nombres. C’est suffisant pour coder les différents caractères figurant sur un clavier
d’ordinateur. Les calculs étant effectués par un processeur, la taille des mots est liée à la capacité du
processeur. Actuellement les calculs avec des nombres sur 64 bits sont courants.

Le langage Python gère des entiers plus longs, et leur taille n’est limitée que par la capacité de la
mémoire.

2.2 Méthodes

Sous forme de tableau, nous obtenons pour le nombre 8050 :

. . . 10000 = 104 1000 = 103 100 = 102 10 = 101 1 = 100

. . . 8 0 5 0

. . . 0 8 0 5 0

L’utilisation du chiffre 0 est déterminante.

L’écriture de 5326 en base dix est constituée des restes obtenus dans les divisions euclidiennes suc-
cessives par 10 jusqu’à obtenir un quotient nul.

5326 10
6 532 10

2 53 10
3 5 10

5 0

En base deux le principe est le même qu’en base dix.
Par exemple, l’écriture de 11 en base deux, ou l’écriture binaire de 11, est constituée des restes obtenus

dans les divisions euclidiennes successives par 2 jusqu’à obtenir un quotient nul.

11 2
1 5 2

1 2 2
0 1 1

1 0

On obtient l’écriture en base deux en lisant les restes de bas en haut, soit 10112, soit r4r3r2r1.

Écrivons les calculs sous une autre forme :
11 = 5× 2 + 1 = (2× 2 + 1)× 2 + 1 = ((1 × 2)× 2 + 1)× 2 + 1 = 1× 23 + 1× 2 + 1
d’où, 11 = 1× 23 + 0× 22 + 1× 21 + 1× 20.
Nous pouvons utiliser un tableau comme en base dix :

. . . 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

. . . 1 0 1 1

Note :

◮ le bit (ou chiffre) le plus à gauche est appelé bit de poids fort ;

◮ le bit (ou chiffre) le plus à droite est appelé bit de poids faible.

En informatique, tout est écrit en base deux. Les données écrites sont souvent regroupées en base huit
ou seize. La présentation en base seize améliore grandement la lisibilité.

Serge Bays 3 Lycée Les Eucalyptus



Informatique en PCSI

Base deux ←→ Base seize
1101 ←→ D
0011 ←→ 3

1101 0011 ←→ D3

Justification de la méthode

Le nombre seize s’écrit 10000 en base deux et 10 en base seize : 100002 = 1016 ;
donc (a7a6a5a4a3a2a1a0)2 = (a7a6a5a4)2 × 100002 + (a3a2a1a0)2 = (A1)16 × 1016 + (A0)16
d’où : (a7a6a5a4a3a2a1a0)2 = (A1A0)16.

Remarque : pour multiplier par deux un nombre écrit en base deux, il suffit d’ajouter un zéro à droite
du nombre : 10112 × 102 = 101102. Cette propriété est vraie dans une base b quelconque : le produit d’un
nombre par b s’obtient en ajoutant un zéro à droite du nombre.

2.3 Représentation en machine

Un entier naturel s’écrit sans signe et on parle d’entier non signé.
Dans une machine, si on utilise un octet pour représenter un entier naturel, on peut représenter les

entiers naturels de 0 (0000 0000 en base deux) à 255 (1111 1111 en base deux). Le nombre 45 par exemple
est représenté par 0010 1101.

Si on utilise seize bits, soit deux octets, on peut représenter les entiers naturels jusqu’à 65535
(1111 1111 1111 1111 en base deux) et dans ce cas 45 est représenté par 0000 0000 0010 1101.

Avec n bits, on peut représenter les nombres entre 0 et 2n − 1, c’est-à-dire tout nombre k qui s’écrit :

k =
n−1∑

i=0

bi2
i avec bi ∈ {0, 1}

En général, un entier est codé sur 4 octets, (soit 32 bits), ou sur 8 octets, (soit 64 bits).

Addition de nombres binaires

L’addition est l’une des opérations les plus simples pour un ordinateur. Il suffit de savoir exécuter les
opérations 0 + 0, 1 + 0, 0 + 1 et 1 + 1 avec une éventuelle retenue.

Pour additionner deux nombres en binaire on peut poser l’addition comme on le fait en base dix, avec
le système de retenue.

On utilise les résultats : 0 + 0 = 0, 1 + 0 = 0 + 1 = 1 et 1 + 1 = 10.
Par exemple :

1 1 0 1 treize
+ 1 0 0 1 neuf
1 1 retenues
1 0 1 1 0 vingt-deux

Attention, si la taille des entiers est limitée, par exemple avec quatre bits, alors dans l’addition ci-
dessus le bit à gauche est perdu. Donc pour la machine, la somme de 1101 et de 1001 vaut 0110. Autrement
dit, si nous demandons à la machine de calculer 13 + 9, elle nous répond 6 !

Serge Bays 4 Lycée Les Eucalyptus



Informatique en PCSI

3 Entiers signés

Considérons un ordinateur qui utilise l’arithmétique décimale et des nombres écrits avec quatre
chiffres. Dix-milles nombres sont donc représentables pas des mots de 0000 à 9999. Si nous souhaitons
représenter des nombres négatifs, nous pouvons envisager plusieurs possibilités.

On pourrait représenter les nombres de +0 à +9999 et les nombres de −0 à −9999. On utilise un
symbole de plus et il y a deux zéros. Mais si nous n’autorisons que quatre chiffres, un chiffre est monopolisé
pour le signe et il n’en reste que trois pour la valeur absolue du nombre.

Une autre possibilité serait de translater tous les nombres n de −5000 à 4999 par n + 5000. Une
difficulté majeure avec ce choix est alors de programmer des opérations.

Si nous effectuons 9999 + 0001 en éliminant le bit de retenue, nous obtenons 0000. Autrement dit :
0000 − 0001 = 9999. De même 0000 − 0002 = 9998, etc. Nous pourrions donc dire que les nombres
positifs sont représenté par les nombres de 0000 à 4999 et les négatifs par les nombres de 5000 à 9999.
Tous les nombres commençant par 5, 6, 7, 8, ou 9 sont négatifs et représentent les nombres de −5000 à
−1. Les négatifs n sont représentés pas n+ 104.

Ce type de représentation est celui utilisé avec les angles sur le cercle trigonométrique gradué de
degré en degré. Les angles de −180 à 179 correspondent à des angles de 0 à 359 : les angles α positifs à
α, les angles α négatifs à α+ 360. Ainsi l’angle −1 correspond à 359.

Remarque : on remplace chaque chiffre c par le chiffre 9 − c dans un nombre à quatre chiffres, puis
on lui ajoute 1 ; par exemple n = 3415 donne 6584 puis p = 6585 ; alors n + p = 10000, soit 0 en ne
gardant que quatre chiffres. Donc p représente −n. C’est la représentation en complément à 104.

� Représentation en complément à deux des entiers signés.

De manière générale, avec n bits, la représentation en machine d’un entier négatif r, est l’écriture
binaire de la différence 2n − (−r). Cette représentation s’appelle le complément à 2n, souvent abrégé en
complément à deux. Pratiquement, pour trouver la représentation d’un entier négatif r, on prend l’écriture
binaire de −r (qui est un entier positif), on inverse les bits de cette écriture et on ajoute 1. Inverser les bits
et ajouter 1 sont des opérations simples pour la machine. Dans toutes ces écritures, la taille des mots, le
nombre de bits utilisés, est fixée.

Exemple avec une taille de six bits, pour obtenir le codage de −12 :
001100 (codage de 12 en binaire sur 6 bits)
110011 (complément à un, on inverse chaque bit)
110100 (on ajoute 1) : représentation de −12 en complément à deux sur 6 bits.

Examinons la capacité de ce système. Avec n bits, on peut représenter les nombres compris entre
−2n−1 et 2n−1 − 1. Les nombres négatifs ont tous le bit de poids fort égal à 1.

Les écritures binaires des entiers naturels de 0 à 2n−1 − 1 représentent les entiers relatifs positifs ou
nul correspondants. Les écritures binaires des entiers naturels de 2n−1 à 2n − 1 représentent les entiers
relatifs négatifs de −2n−1 à −1.

Ainsi avec un octet, soit huit bits, on peut écrire les entiers naturels n de 0 à 255 et donc représenter
les entiers relatifs de −27 = −128 à 27 − 1 = 127. Les nombres n de 0 à 127, (de 0000 0000 à 0111 1111
en base deux), servent à représenter les entiers relatifs positifs ou nul r avec n = r et les nombres n

de 128 à 255, (de 1000 0000 à 1111 1111 en base deux), représentent les entiers relatifs négatifs r avec
n = r+256. Avec quatre octets, on peut écrire les entiers naturels n de 0 à 232 − 1 et donc représenter les
entiers relatifs de −231 à 231 − 1.

Remarque : −1 est représenté par le nombre 2n − 1 écrit en binaire, donc par une suite de 1.

Résumé de la représentation avec trois bits :

codage binaire 000 001 010 011 100 101 110 111
entiers non signés 0 1 2 3 4 5 6 7

entiers signés 0 1 2 3 -4 -3 -2 -1

Serge Bays 5 Lycée Les Eucalyptus


	Numérisation
	Représentation des nombres
	Le binaire
	Vocabulaire

	Entiers naturels
	Mots de taille fixe
	Méthodes
	Représentation en machine

	Entiers signés

