
Informatique en PCSI

Informatique PCSI

Analyse d’un programme

1 Complexité d’un algorithme

Lorsqu’un algorithme est correct, il doit encore, avant d’être programmé et exécuté, satisfaire à deux
impératifs en terme de consommation de ressources :

◮ utiliser un espace en mémoire acceptable, on parle de complexité en espace ;

◮ produire la réponse attendue en un temps acceptable, on parle de complexité temporelle.

Nous parlons de la complexité d’un algorithme ou de son coût.

La complexité (ou le coût) en espace correspond aux tailles des variables utilisées. Elle intervient par
exemple dans la manipulation d’images où on recherche pour les algorithmes une complexité constante,
c’est-à-dire une écriture d’éléments en mémoire qui utilise un espace constant et réduit autant que possible.
Diverses parties d’une machine sont utilisées pour la mémoire et plus les données à conserver ont une taille
importante, plus elles sont stockées sur des parties éloignées du processeur avec un temps d’écriture et de
lecture qui s’allonge.

Il faut être vigilant avec des algorithmes de tri pour lesquels de nouvelles listes sont construites à
chaque appel récursif. Chaque fois que de nouvelles listes sont créées ou que des permutations d’éléments
utilisent de l’espace mémoire, on perd en temps d’exécution une partie du bénéfice obtenu par l’algorithme
sur le nombre d’opérations à effectuer.

Étudier la complexité temporelle consiste à évaluer le temps d’exécution d’un algorithme en fonction
de la taille des données en entrée.

Pour conduire ces études, on évalue un ordre de grandeur du nombre d’opérations élémentaires conte-
nues dans l’algorithme (affectations, opérations arithmétiques, opérations logiques, comparaisons) en sup-
posant qu’elles ont le même temps d’exécution constant. C’est largement suffisant en première analyse.
Pour un même problème, ce nombre d’opérations peut être différent suivant les cas. Par exemple trier une
liste déjà triée est un cas à priori favorable. Il est important d’étudier le cas le moins favorable, le pire qui
puisse se produire, celui qui coûte le plus cher.

Si une machine effectue 108 opérations en une seconde, la question n’est pas de savoir si un algo-
rithme effectue 108+1 ou 108−1 opérations. La question est plutôt d’évaluer un ordre de grandeur du taux
d’accroissement du nombre d’opérations en fonction de la taille n des données par exemple pour n > 108.
Si n est multiplié par 2, est-ce que le nombre d’opérations est environ 2 fois plus grand, 4 fois plus grand,
8 fois plus grand ou pratiquement identique?

Avec 108 opérations par seconde, si un programme comporte environ 1011 opérations et qu’il doit être
exécuté mille fois, il faudra attendre la réponse pendant plus de dix jours. Il est donc important de pouvoir
choisir l’algorithme le plus « performant ».

1.1 Temps d’exécution

Le temps d’exécution d’un programme dépend de la machine, du langage de programmation, de
l’algorithme. La part de l’algorithme est obtenue par une évaluation de sa complexité temporelle.

Nous supposons que les temps d’exécution d’une affectation, d’une opération arithmétique simple,
d’une comparaison sont pratiquement identiques et constituent une unité de base.

Nous posons les règles suivantes :
• le temps d’exécution d’une suite d’instructions est la somme des temps d’exécution de chaque

instruction ;
• le temps d’exécution d’une instruction conditionnelle

si test :

Serge Bays 1 Lycée Les Eucalyptus



Informatique en PCSI

instructions1

sinon :

instructions2

est inférieur ou égal au maximum des temps d’exécution de instructions1 et instructions2,
plus le temps d’exécution du test ;

• le temps d’exécution d’une boucle
pour i variant de 1 à p :

instructions

est p fois le temps d’exécution de instructions, si ce temps est constant, plus p (le nombre d’affecta-
tions pour la variable i). Si le temps d’exécution de instructions dépend de la valeur de p, l’étude se
mène au cas par cas.

Pour une boucle tant que, l’étude se mène aussi au cas par cas.

L’évaluation du temps d’exécution d’un algorithme se réduit ainsi à une évaluation en fonction d’un
nombre n, (entier représentant la taille des données en entrée), du nombre total d’opérations élémentaires
noté un. Le niveau de complexité correspond au type de croissance de la suite (un).

Suivant les valeurs de l’entrée, un peut pendre des valeurs très différentes. Si, par exemple, nous
parcourons une liste à l’aide d’une boucle, à la recherche d’un élément, celui-ci peut se trouver en premier
et nous sortons de la boucle, c’est le cas le plus favorable. Il peut se trouver à la fin de la liste, c’est le pire
des cas.

1.2 Niveaux de complexité

Notation

Considérons deux suites (un) et (vn).
Si pour tout n assez grand, un est majorée par vn à une constante près, on écrit un ∈ O(vn). On dit

que un est de l’ordre de grandeur de vn.

Mathématiquement, on écrit : un ∈ O(vn) si ∃N ∈ N, ∃k ∈ R, ∀n > N , un ≤ kvn.

En pratique, on utilise souvent la propriété suivante : si lim
n→+∞

un

vn
= ℓ alors un ∈ O(vn).

Autrement dit, on vérifie si
un

vn
converge vers une constante.

� Complexité constante : un ∈ O(1). Le temps d’exécution est borné (indépendant de n). C’est le
cas, par exemple, pour obtenir le premier élément d’une liste.

� Complexité logarithmique : un ∈ O(log2 n). On double le temps d’exécution, en élevant au
carré la taille des données. C’est le cas avec la recherche dichotomique dans une liste triée.

Les algorithmes de complexité logarithmique sont très performants. Les ordres de grandeur log2 n,
log10 n et lnn sont comparables.

� Complexité linéaire : un ∈ O(n). Cet ordre de grandeur peut s’obtenir avec une boucle non
conditionnelle. Par exemple, le calcul de la somme ou de la moyenne de n termes, la recherche séquentielle
dans une liste non triée de longueur n, ont une complexité en O(n).

Soit n la taille d’une donnée. On obtient une complexité linéaire en n si le nombre d’opérations à
effectuer peut s’écrire sous la forme αn + β, avec α et β réels, α > 0.

� Complexité log-linéaire ou linéarithmique : un ∈ O(n log2 n). C’est la complexité de certains
algorithmes de tri et pour les tris par comparaisons, il est impossible de faire mieux.

� Complexité quadratique : un ∈ O(n2). C’est la complexité d’algorithmes construits avec deux
boucles imbriquées comme certains algorithmes de tri.

Soit n la taille d’une donnée. On obtient une complexité quadratique en fonction de n si le nombre
d’opérations à effectuer peut s’écrire αn2 + βn+ γ, avec α, β et γ réels, α > 0.

Serge Bays 2 Lycée Les Eucalyptus



Informatique en PCSI

� Complexité polynomiale : un ∈ O(nk), k ≥ 2 fixé. Un algorithme d’une telle complexité n’est
utilisable que dans quelques cas particuliers. La complexité est cubique si k = 3.

� Complexité exponentielle : un ∈ O(2n) ou un ∈ O(kn), k > 1. C’est la complexité de cer-
tains algorithmes de résolution de problèmes pour lesquels personne n’a encore trouvé d’algorithmes plus
performants et qui sont en pratique inutilisables.

1.3 Cas typiques

Avec deux boucles for imbriquées, nous avons trois cas typiques. Dans un cas, la complexité est
linéaire. Dans les deux autres cas elle est quadratique.

Dans les codes qui suivent, les pointillés sous-entendent un nombre fixe d’opérations.
Premier cas : n est la taille de la donnée, k est un nombre fixé.

for i in range(n):

...

for j in range(k):

...

Il y a n passages dans la boucle externe. À chaque passage dans cette boucle, il y a un nombre fixe
q d’opérations puis k passages dans la boucle interne. Dans la boucle interne, nous avons un nombre fixe
d’opérations r. Donc pour chaque valeur de i, nous avons q + k × r = α opérations. Le nombre total
d’opérations est donc αn et la complexité est linéaire.

Deuxième cas : n est la taille de la donnée.

for i in range(n):

...

for j in range(n):

...

Il y a n passages dans la boucle externe. À chaque passage dans cette boucle, il y a un nombre fixe
q d’opérations puis n passages dans la boucle interne. Dans la boucle interne, nous avons un nombre
fixe d’opérations r. Donc pour chaque valeur de i, nous avons q + n × r opérations et le nombre total
d’opérations est alors n(q + n× r) = rn2 + qn. La complexité est quadratique.

Troisième cas : n est la taille de la donnée.

for i in range(n):

...

for j in range(i):

...

Il y a n passages dans la boucle externe. À chaque passage dans cette boucle, pour chaque valeur de
i, il y a un nombre fixe d’opérations q puis i passages dans la boucle interne. Dans la boucle interne, nous
avons un nombre fixe d’opérations r. Donc pour chaque valeur de i, nous avons q + i× r opérations. Les
valeurs de i sont successivement 0, 1, 2, . . . , n −1. Le nombre total d’opérations est donc q + (q + 1 ×

Serge Bays 3 Lycée Les Eucalyptus



Informatique en PCSI

r) + (q + 2 × r) + . . . + (q + (n − 1) × r), soit nq + r(1 + 2 + . . . + (n − 1)). Le calcul de la somme

des entiers est connu. Le résultat est nq + r
n(n − 1)

2
.

Finalement le nombre d’opérations est
r

2
n2 +

(

q −
r

2

)

n, qui est de la forme αn2 + βn et la com-

plexité est quadratique.

Dans les chapitres précédents, divers niveaux de complexité sont présents. Au chapitre 1, la recherche
séquentielle d’un élément dans une liste a une complexité linéaire. Dans le cas d’une liste triée, cette
recherche à l’aide d’un algorithme dichotomique au chapitre 4 a une complexité logarithmique. Au chapitre
2, le tri à bulles a une complexité quadratique. C’est aussi le cas avec les algorithmes de tri sélection et
insertion au chapitre 8. Dans ce même chapitre, une amélioration est apportée par le tri fusion qui a une
complexité log-linéaire.

De manière générale, la dichotomie permet de passer d’un ordre n à un ordre log2 n.

1.4 Propriétés

� Des algorithmes permettant de résoudre un même problème, peuvent être rangés suivant leur ordre
de complexité du plus efficace au moins efficace. Le classement des ordres de complexité doit être
connu : O(1), O(log2 n), O(n), O(n log2 n), O(n2), O(n2 log2 n), O(n3), etc.

� Si deux blocs d’instructions successifs ont une complexité en O(un) alors la complexité totale est
en O(un).

� Si on répète un fois un bloc d’instructions de complexité en O(vn) alors la complexité totale est en
O(unvn). Si un a une valeur constante, la complexité totale est en O(vn).

� Si deux blocs d’instructions successifs ont une complexité respectivement en O(un) pour le premier
et en O(vn) pour le second alors la complexité totale est en O(max(un, vn)).

Serge Bays 4 Lycée Les Eucalyptus


	Complexité d'un algorithme
	Temps d'exécution
	Niveaux de complexité
	Cas typiques
	Propriétés


