Informatique en PCSI

Informatique PCSI
Analyse d’un programme

Le contenu doit étre analysé afin de vérifier que le résultat obtenu lors de son exécution est celui
attendu d’apres la spécification quelles que soient les données en entrées pour ne pas provoquer des erreurs
en chaines qui pourraient &tre catastrophiques.

1 Validité d’un algorithme

Lorsqu’on écrit un algorithme, il est impératif de vérifier que cet algorithme produit un résultat apres
un nombre fini d’étapes et que ce résultat est correct dans le sens ol il est conforme a la spécification
précisée. Nous disons alors que 1’algorithme est valide.

Un algorithme itératif est construit avec des boucles. Le nombre de passages dans une boucle doit
étre fini. Si I’algorithme est récursif, le nombre d’appels récursifs doit étre fini.
Deux conditions sont donc a vérifier :

m [’algorithme donne une réponse, c’est I’étude de la terminaison;
m la réponse donnée est celle attendue, c’est I’étude de la correction.

Si les deux conditions sont satisfaites, nous disons que I’algorithme est valide.

Si lorsqu’il termine, I’algorithme donne la réponse attendue on parle de correction partielle. Si la
terminaison est assurée dans tous les cas et que la réponse est correcte, on parle de correction totale.

Pour prouver la terminaison d’un algorithme itératif, nous disposons de la notion de variant de boucle.
Pour prouver qu’un algorithme itératif est correct, nous disposons de la notion d’invariant de boucle.

1.1 Terminaison

Méthode

Dans le cas de boucles non conditionnelles, le nombre d’étapes est déterminé. Nous parlons donc
de boucles conditionnelles. Pour prouver la terminaison, nous exhibons une expression, qui peut €tre une
simple variable, dont les valeurs prises au cours des itérations constituent une suite qui converge en un
nombre fini d’étapes vers une valeur satisfaisant la condition d’arrét de la boucle. Cette expression se
nomme un variant de boucle.

Considérons par exemple le code suivant ou la valeur de la variable a est un nombre quelconque :

x =0
while x xx 2 < a:
x =x + 1

Si la valeur de a est négative ou nulle, il n’y a aucun passage dans la boucle. Sinon, la suite des
valeurs de la variable x est 0,1,2,...,n, ol n est la premiere valeur dont le carré est supérieur ou égal a
la valeur de a. Le nombre de passages dans la boucle est donc fini.

Voici un deuxieéme exemple ou les variables a et b sont des entiers naturels.

m =0

p =0

while m < a
m=m + 1
p=p+h

Serge Bays 1 Lycée Les Eucalyptus



Informatique en PCSI

Dans cet exemple, nous choisissons comme variant la variable m. Cette variable prend pour valeurs
successives 0,1,...,a etil y a donc exactement a passages dans la boucle, ce qui prouve la terminaison.

1.2 Correction

Définition

Un invariant d’une boucle est une propriété qui est vérifiée avant I’entrée dans une boucle et apres
chaque passage dans cette boucle.

Pour démontrer qu’une propriété est un invariant d’une boucle, on commence donc par vérifier que
la propriété est vraie avant I’entrée dans la boucle. On prouve ensuite que si la propriété est vraie avant un
passage dans la boucle, alors elle est vraie apres ce passage. On peut alors conclure, si la terminaison est
assurée, que la propriété est vraie a la sortie de la boucle

Ceci traduit le fait que la boucle réalise bien la tiche souhaitée.

Exemple
Reprenons 1’algorithme de calcul avec une boucle conditionnelle présenté plus haut :

m =0

p =0

while m < a:
m=m + 1
p=p+h

Notons m et p les valeurs des variables m et p.

Nous allons montrer que la propriété « p = m x b» est un invariant de la boucle.

Avant le premier passage dans la boucle, m = 0 et p = 0, donc I’égalité p = m X b est vraie.

Supposons que p = m x b avant un passage dans la boucle. Les nouvelles valeurs de m et p apres le
passage, notées m/’ et p/, vérifient : m’ = m+1etp’ = p+0b. Alors p’ = mxb+b= (m+1)xb=m'xb.
La propriété est donc vraie apres ce passage dans la boucle.

La terminaison a été prouvée précédemment et nous avons en sortie de boucle p = m x b. Or, a
la sortie de la boucle, la variable m a pour valeur celle de a. Nous avons finalement obtenu a la fin du
programme le produit p = a X b.

2 Tests d’un programme

2.1 Bugs

Un circuit électronique, et plus généralement une machine, fait ce qu’on lui demande de faire. Si une
erreur est commise lors de I’exécution d’un programme, alors cette erreur est d’une certaine maniere écrite
dans le programme. De plus, ce qui peut sembler étre une « petite erreur » peut avoir des conséquences
trés importantes.

Considérons le programme qui suit.

>>> def f(x, y):
return (x * y) xx 0.5

>>> def g(x, y):
return (x *x 0.5) x (y % 0.5)

Serge Bays 2 Lycée Les Eucalyptus



Informatique en PCSI

>>> g(lel52, 1lel52) / f(lel52, 1el52)
1.0
>>> g (lel55, 1el55) / f(lelb5, 1lel55)
0.0

En mathématiques, si x et y sont positifs : /Ty = \/z,/y.

Le premier résultat est donc celui attendu, pas le second. Ce simple exemple montre la nécessité de
tester un programme. Il prouve que I'un des deux programmes n’est pas correct (mais ne prouve pas que
I’autre est correct).

Le mé&me type de bug peut &tre présent avec un algorithme bien connu, celui d’une recherche dichoto-
mique, lorsqu’on écritm = (g + d) // 2 pour obtenir I’indice du milieu des indices gauche et droite.
La solution pour éviter ce type de bug estd’écrirem = g + (d - g) // 2.

2.2 Jeu de tests
Les programmes que nous écrivons ne fonctionnent pas toujours au premier essai comme nous le
prévoyons.
» Des tests permettent d’observer le comportement d’un programme. Est-ce qu’il produit le résultat
attendu dans un cas précis ?

» Le débogage consiste a corriger un programme lorsque nous savons qu’il ne fonctionne pas correc-
tement.

Afin de rendre les tests et le débogage plus simples, il est important d’y penser lors de 1’écriture
d’un programme. Une bonne attitude est de décomposer le programme en éléments qui peuvent chacun
étre testés et débogués indépendamment des autres. L’utilisation de fonctions est une bonne habitude.
La documentation des programmes, I’écriture de spécifications et 1’utilisation d’assertions participent a
I’élaboration de tests pertinents.

Des tests peuvent permettre de faire apparaitre différents types d’erreurs.

» une erreur survient lors de certains test et pas avec d’autres, ¢’est un bug intermittent ;
» une erreur survient pour chaque test, c’est un bug permanent.

» le programme s’arréte de maniére prématurée ou ne s’arréte pas, le bug est visible;

Quand le programme s’exécute enticrement, il est possible de vérifier que le résultat obtenu est ce-
lui qui est attendu en ajoutant au programme des assertions. Lorsqu’une assertion n’est pas vérifiée, par
exemple assert £ (3) == 0,le message AssertionError est affiché.

Lorsque des tests, aussi nombreux soient-ils, ont été effectués avec succes, il reste encore la possibilité
d’avoir un bug caché avec un programme qui produit un résultat faux dans des cas qui n’ont pas été testés.

2.3 Construire un jeu de tests

Construire un jeu de tests consiste a définir un ensemble de données qui vont étre utilisées pour
vérifier que le programme produit bien les résultats attendus avec ces données. Ces vérifications peuvent
s’effectuer de plusieurs manieres. On peut utiliser la fonction print pour afficher quelques réponses
et vérifier visuellement qu’elles sont correctes. Pour un nombre conséquent de tests, il est plus pratique
d’utiliser des assertions. Un message d’erreur est affiché seulement pour les cas qui posent probleme.

Dans la construction d’un jeu de tests, on distingue plusieurs types de tests.

» Tester quelques cas simples typiques (pour une utilisation basique du programme).

» Tester des valeurs extrémes, des cas limites, des cas interdits.

Serge Bays 3 Lycée Les Eucalyptus



Informatique en PCSI

» Tester un nombre important de données (choisies de maniere aléatoire par exemple).

» Tester des cas qui pourraient nécessiter un temps d’exécution important afin de pouvoir évaluer
Iefficacité du programme.

Pour effectuer ces tests, on partitionne le domaine d’entrée. On utilise ensuite une donnée, représen-
tante de chaque partie, pour effectuer un test en vérifiant la sortie.

Par exemple avec une fonction qui renvoie le pgcd de deux entiers naturels m et n, ’ensemble des
données acceptables en entrées est I’ensemble des couples d’entiers naturels. On peut distinguer les cas ou
m > n, m < n,m = n, mais aussi les cas ou m est divisible par n ou n divisible par m, les cas ou m et n
sont premiers entre eux. Il y a aussi les cas limites, soit I’un des deux entiers est nul ou les deux entiers sont
nuls. Les tests peuvent alors étre effectués avec par exemple les couples (16,12), (9,15), (8,8), (12,6),
(10, 30), (15,14), (4,0), (0,4), (0,0).

On écrit donc des instructions comme assert pgcd (16, 12) == 4.

Avec une fonction qui prend une liste en entrée, on teste naturellement le cas d’une liste vide et le cas
d’une liste a un élément. En général, lorsqu’on commence a écrire des tests, des cas auxquels on ne pense
pas immédiatement viennent peu a peu a I’esprit.

2.4 Exemples

Considérons le fonction permute définie ci-dessous avec sa spécification et des commentaires :

def permute (liste):
""" liste est de type list
la fonction permute le premier et le dernier élément
et renvoie une nouvelle liste
permute ([1, 2, 3, 4]) renvoie [4, 2, 3, 1] """
copie = liste[:] # une copie superficielle de la liste
n = len(copie)
copie[0], copie[n-1] = copie[n-1], copie[0] # permutation des valeurs
return copie

Pour écrire un jeu tests, nous considérons quelques cas typiques; une simple liste de nombres, une
liste dont les éléments sont des listes, une liste qui contient deux éléments ou un unique élément, et une
liste vide.

assert permute , 2, 3, 41) == [4, 2, 3, 1]
assert permute 1, 21, [3, 41, [5, 6]1) == [[5, 6], [3, 41, [1, 2]]
2]1) == [2, 1]

assert permute

([1
([
assert permute ([1
([1
assert permute ([]

1) == [1]
) =

En exécutant le programme, nous remarquons que la fonction effectue bien ce qui est prévu méme
pour une liste ne contenant qu’un seul élément. Par contre, le cas d’une liste vide n’est pas traité et une
erreur interrompt le programme.

Nous complétons donc le code de la fonction en ajoutant if liste == []: return [] au
début du code de la fonction. Avec ce code, tous les tests sont passés sans probleme.

Les tests ont donc permis d’améliorer le comportement de la fonction en ajoutant la gestion d’un cas
d’utilisation qui n’avait pas été prévu au départ.

Serge Bays 4 Lycée Les Eucalyptus



Informatique en PCSI

Il peut étre intéressant d’écrire une fonction test contenant une batterie de tests.
Pour un exemple nous considérons la division euclidienne.

def division(a, b):
"""y est un entier naturel
b est un entier naturel non nul"""

r = a

q=20

while r >= b:
r =1r — Db
qa=qgq+1

return q, r

Tous les types de tests envisageables ne sont pas explorés ici. La fonction écrite ci-dessous permet
simplement de vérifier que le résultat renvoyé par la fonction division est correct dans une série de cas.

def test_division() :
""" la fonction division renvoie le quotient g et le reste r
dans la division euclidienne de a par b
un invariant est : a ==b » g+ r """
for a in range(13):
for b in range(l, 13):
g, r = division(a, b)
assert a == b » g+ r and 0 <= r < b

Lors de I’exécution de la fonction test_division, aucun probleme n’est signalé. Si par erreur il
était écritwhile r > balaplacedewhile r >= b dans lafonction division,la fonction de test
révelerait cette erreur avec une AssertionError.

De maniere générale, si un test n’est pas réussi, la fonction ne précise pas quelle erreur a été commise
mais elle informe que le test a échoué avec une AssertionError.

Les test présentés sont tres simples. Le plus important est d’avoir toujours en téte que méme avec
un grand nombre de tests variés, I’objectif n’est pas de prouver qu’il n’y a aucune erreur mais d’en
trouver.

Un algorithme classique, la recherche dichotomique dans une liste triée, pose souvent quelques diffi-
cultés de programmation. Pour écrire un jeu de tests, il faut envisager différents types de cas :

» un élément qui appartient alaliste: 2 et [1, 2, 3, 4];

» un élément qui n’appartient pas a laliste: Oet [1, 2, 3, 4]1,5et[1, 2, 3, 41,2.5et
(1, 2, 3, 47.

On regarde ensuite des cas extrémes, par exemple en lien avec la taille de la liste :

» S5et[],5et [5],0et [5].

On teste des cas en fonction de la place de 1’é1ément cherché, en premier, en dernier, au milieu :

» let[[l, 2, 3, 4]1,4e[1, 2, 3, 41,2et[1, 2, 31].

On peut ensuite effectuer des tests avec de treés grandes listes.

Le calcul du milieu ne doit pas étre négligé. Le résultat doit €tre correct méme avec de tres grands
nombres. On peut envisager de séparer le calcul du milieu en créant une nouvelle fonction, ce qui produit
un code encore plus lisible et plus facile a tester.

Serge Bays 5 Lycée Les Eucalyptus



	Validité d'un algorithme
	Terminaison
	Correction

	Tests d'un programme
	Bugs
	Jeu de tests
	Construire un jeu de tests
	Exemples


