
Informatique en PCSI

Informatique PCSI
Écriture d’un programme (suite)

1 Spécification, annotation

1.1 Spécification d’une fonction

Une spécification permet d’informer les utilisateurs de la tâche effectuée par la fonction, de préciser

les contraintes imposées pour les paramètres et ce qui peut être attendu des résultats. Elle peut aussi préciser

les messages d’erreurs affichés en cas de mauvaise utilisation. Elle est résumée dans la docstring, inscrite

au début du corps de la fonction entre des triples guillemets.

def nom_de_la_fonction(arguments):

""" informations sur la fonction, non obligatoires

mais recommandées """

corps de la fonction

La spécification est destinée à l’utilisateur. Elle n’est pas utilisée par l’interpréteur Python.

Par exemple, si nous souhaitons obtenir des informations sur la fonction nommée divmod, nous

utilisons la fonction help dans l’interpréteur :

>>> help(divmod)

Help on built-in function divmod in module builtins:

divmod(x, y, /)

Return the tuple (x//y, x%y). Invariant: div*y + mod == x.

On peut effectuer un test avec un nombre décimal :

>>> x = 7.2

>>> y = 3

>>> div, mod = divmod(x, y)

>>> div

2.0

>>> mod

1.2000000000000002

>>> div*y + mod == x

True

Il ne faut pas être surpris de la valeur obtenue pour mod. Les calculs avec des flottants sont des calculs

approchés. Ceci est lié à la représentation des nombres en machine.

La spécification d’une fonction est écrite, comme l’est un commentaire dans un programme, à l’atten-

tion des utilisateurs qui ont besoin de savoir comment l’utiliser. L’objectif est de les éclairer, de les aider à

saisir rapidement le rôle d’une ou plusieurs instructions. Un choix pertinent dans les noms de variables et

de fonctions participent aussi à la compréhension d’un code.

Voici comment définir une fonction avec sa spécification et quelques annotations :

Serge Bays 1 Lycée Les Eucalyptus

Informatique en PCSI

def permute(liste):

""" liste est de type list

la fonction permute le premier et le dernier élément

et renvoie une nouvelle liste

permute([1, 2, 3, 4]) renvoie [4, 2, 3, 1] """

n = len(liste)

copie = liste[:] # une copie superficielle de la liste

copie[0], copie[n-1] = copie[n-1], copie[0] # permutation des valeurs

return copie

Le texte entre les triples guillemets fournit ici une description de l’entrée, du traitement et du résultat.

Ceci constitue, avec le nom de la fonction, sa signature.

Avec cette fonction permute, une erreur sur le paramètre provoque l’arrêt de l’exécution de la fonc-

tion. Cela se produit si la fonction est appelée avec un nombre ou une chaîne de caractères en paramètre.

Mais une fonction peut s’exécuter sans problème même si les paramètres ne sont pas ceux attendus. Les

problèmes peuvent survenir plus loin dans le programme et la correction de l’erreur est alors plus difficile.

Prenons un exemple très simple :

def calcul(x, y):

return 2 * (x + y)

Cette fonction est programmée pour effectuer un calcul avec deux nombres.

>>> calcul(1, 3)

8

Si ce résultat doit être utilisé ensuite dans le programme pour un autre calcul, il est capital que ce soit

bien un nombre. Mais ici, si les deux paramètres sont de type str, la fonction s’exécute sans aucun souci et

produit un résultat qui n’est pas du tout du type attendu.

>>> calcul(’1’, ’3’)

’1313’

Il est donc important que les conditions restrictives sur les paramètres soient bien précisées dans la

docstring pour que la fonction soit utilisée correctement.

def calcul(x, y):

""" x et y sont du type int ou float """

return 2 * (x + y)

Les exemples sont simples mais il faut bien comprendre qu’une spécification est une sorte de contrat

entre l’auteur d’un code et l’utilisateur. L’auteur garantit un résultat sous réserve d’une utilisation correcte

qui est précisée.

Serge Bays 2 Lycée Les Eucalyptus

Informatique en PCSI

1.2 Annotations, commentaires

Un programme doit pouvoir être lu et relu facilement par l’auteur mais aussi par quelqu’un qui dé-

couvre le programme. Il est important pour cela d’annoter certaines lignes de code ou des blocs d’instruc-

tions afin de préciser leur rôle.

On utilise pour cela un commentaire qui est une ligne de texte précédée du signe #. Comme c’est le

cas pour une spécification, un commentaire n’est pas utilisé par l’interpréteur Python.

Un choix de structure ou de méthode par exemple peut aussi être précisé et expliqué à l’aide de

commentaires. Pourquoi choisir un dictionnaire plutôt qu’une liste, pourquoi une fonction récursive plutôt

qu’itérative, etc.

def mafonction(...):

...

utilisation d’un dictionnaire pour stocker les données

dico = {}

on teste si la clé appartient au dictionnaire

if cle in dico:

...

si la clé n’appartient pas au dictionnaire, on la crée

else:

dico[cle] = val

...

On peut découper un programme en plusieurs parties en précisant l’utilité de chaque partie.

"""description du contenu,

objectifs du programme,

choix de conception"""

#importation de modules et de fonctions

...

#définitions de constantes, de variables

...

#définitions de fonctions annexes

...

#définition de la fonction principale

...

#exemples d’utilisation et tests

...

2 Assertion

Une spécification permet d’éclairer sur les données en entrées, le type des valeurs autorisées, la plage

de valeurs acceptées. On peut ajouter des instructions qui vont arrêter le programme en cas de mauvaises

utilisation.

Serge Bays 3 Lycée Les Eucalyptus

Informatique en PCSI

Une assertion est l’affirmation qu’une propriété est vraie. Elle est composée du mot assert suivi

d’une expression dont la valeur est interprétée comme une valeur booléenne. Si l’expression a la valeur

True il ne se passe rien. Sinon le programme est interrompu et un message d’erreur s’affiche terminé par

AssertionErrror.

Voici un exemple simple :

def inverse(x):

"""x est un nombre non nul de type int ou float

renvoie l’inverse de x

"""

assert x != 0

return 1 / x

Utilisation de la fonction :

>>> inverse(-3)

-0.3333333333333333

>>> inverse(0)

Traceback (most recent call last):

File "<pyshell#5>", line 1, in <module>

inverse(0)

File "C:/Documents/progs/test.py", line 5, in inverse

assert x != 0

AssertionError

Un exemple avec une fonction qui prend en paramètres un dictionnaire et une clé :

def fonction(dico, k):

"""dico est un dictionnaire, k est une clé de ce dictionnaire

"""

assert k in dico

...

On contrôle si la valeur passée en paramètre pour exécuter le fonction est bien une clé du dictionnaire.

Si ce n’est pas le cas, le programme s’interrompt.

De manière générale, on utilise assert pour contrôler une valeur.

Serge Bays 4 Lycée Les Eucalyptus

	Spécification, annotation
	Spécification d'une fonction
	Annotations, commentaires

	Assertion

