Spécialité NSI en terminale

Spécialité NSI en terminale
Arbres binaires et algorithmes

1 Parcours d’un arbre binaire

On parcourt un arbre pour calculer sa taille ou sa hauteur, pour chercher une valeur particulieére ou
pour afficher les différentes valeurs, etc. Il existe différentes facons d’effectuer ce parcours. Nous distin-
guons un parcours en profondeur d’abord et un parcours en largeur d’abord.

1.1 Parcours en profondeur d’abord

En anglais, on parle de Depth-First Search (DFS).

Principe : on explore chaque branche complétement avant d’explorer la branche voisine. La program-
mation récursive est indiquée :

e sil’arbre est non vide, on parcourt de maniere récursive son sous-arbre gauche puis son sous-arbre

droit;

e sinon, c’est terminé.

On distingue trois cas suivant le moment ou est traitée une racine d’un sous-arbre. Traiter une racine
signifie par exemple afficher la valeur.

e Silaracine est traitée avant ses deux sous-arbres, il s’agit d’un ordre préfixe.

e Silaracine est traitée entre ses deux sous-arbres, il s’agit d’un ordre infixe.

e Silaracine est traitée apres ses deux sous-arbres, il s’agit d’un ordre postfixe.

Nous reprenons toujours le méme arbre exemple et nous complétons I’interface afin de pouvoir traiter
les deux implémentations, (liste et classe), en méme temps. Nous souhaitons afficher les différentes valeurs
des sommets.

def affiche_valeur (arbre):
if not wvide (arbre) :
if isinstance (arbre, list):
print (arbre[0], end=" ")
else:
print (arbre.valeur, end=" ")

L’interface est donc composée des fonctions vide, gauche,droit,etaffiche_valeur.
Nous définissons alors les fonctions de parcours.

def dfs_prefixe (arbre):
if not vide (arbre) :
affiche_valeur (arbre)
dfs_prefixe (gauche (arbre))
dfs_prefixe (droit (arbre))

def dfs_infixe (arbre):
if not vide (arbre) :
dfs_infixe (gauche (arbre))
affiche_valeur (arbre)
dfs_infixe (droit (arbre))

Serge Bays 1 Lycée Les Eucalyptus



Spécialité NSI en terminale

def dfs_postfixe (arbre):
if not wvide (arbre) :
dfs_postfixe (gauche (arbre))
dfs_postfixe (droit (arbre))
affiche_valeur (arbre)

Les programmes sont exécutés dans I’interpréteur Python avec 1’arbre exemple et les deux implémen-
tations. Les fonctions de parcours donnent les résultats suivants :

>>> dfs_prefixe (a)
A BDGETCTF

>>> dfs_prefixe (b)
A BDGETCTF

>>> dfs_infixe (a)
D GBEATFUZC

>>> dfs_infixe (b)
DGBEAFC

>>> dfs_postfixe(a)
GDEBTEFZCA

>>> dfs_postfixe (b)
GDEBTEFZCA

Nous obtenons des parcours, identiques pour les deux implémentations de 1’arbre exemple, qui sont
représentés ci-dessous dans les trois cas.

Arbre Ordre préfixe

Comme cela a été fait précédemment, il est possible avec I’implémentation de 1’arbre a 1’aide d’une
classe de définir dans cette classe trois méthodes dfs_prefixe,dfs_infixe,dfs_postfixe.Ceci

Serge Bays 2 Lycée Les Eucalyptus



Spécialité NSI en terminale

est proposé en exercice.

De maniere générale, 1’ordre d’un parcours préfixe est le suivant :
14

Un parcours préfixé est comparable a I’ordre alphabétique sur les préfixes de mots :
/ A \
AL AR
ALP ALT ARB ART

AVANVATA

ALPH ALPI ALTE ALTR ARBR ARBU ARTE ARTI

Un parcours infixe et un parcours postfixe :
4 7
2 6 3 6
1 3 5 7 1 2 4

1.2 Parcours en largeur d’abord

5

Le cas d’un parcours en largeur, (BFS pour Breadth-First Search en anglais), pose quelques difficultés.
Il s’agit de parcourir un arbre niveau par niveau en considérant tous les sommets de chaque niveau.
On commence donc par la racine, puis les deux racines de chacun des deux sous-arbres, puis les

quatre racines de chacun des quatre sous-arbres et ainsi de suite.
1
2 3
4 5 6 7

Serge Bays 3 Lycée Les Eucalyptus

Parcours premier niveau

Parcours deuxiéme niveau

Parcours troisieme niveau




Spécialité NSI en terminale

La méthode la plus pratique consiste a utiliser une structure de file. Il peut étre utile de consulter le
chapitre 3 sur les structures de données. Pour mémoire, le principe d’une file est « premier entré, premier
sorti ».

Description de I’algorithme

On suppose 1’arbre non vide.

e On place I’arbre dans la file.

o Tant que la file n’est pas vide, on défile un élément, qui est un arbre, on affiche la valeur de la
racine et on place dans la file chacun de ses deux sous-arbres s’ils ne sont pas vides.

Il s’agit d’un algorithme itératif.
Nous reprenons 1’arbre exemple avec la classe Arbre. Plusieurs possibilités sont offertes pour repré-
senter une file (voir chapitre 3). Nous utilisons ici le module queue.

Définition d’un arbre :

class Arbre:
def _ _init_ (self, wval):
self.valeur = val
self.gauche = None
self.droit = None

def ajout_gauche(self, val):
self.gauche = Arbre (val)

def ajout_droit (self, wval):
self.droit = Arbre(val)

def taille(self):
tg = self.gauche.taille() if self.gauche else 0
td = self.droit.taille() if self.droit else O
return 1 + tg + td

= Arbre('A’)
.ajout_gauche ("B’)
.ajout_droit ('C’)
.gauche.ajout_gauche ('D’)
.gauche.ajout_droit ('E’)
.gauche.gauche.ajout_droit ('G’)
.droit.ajout_gauche ('F’)

O oo oo oo

Définition de la fonction parcours_largeur:

from queue import =

def parcours_largeur (arbre) :
f = Queue (arbre.taille()) # taille de la file
f.put (arbre) # 1’arbre est placé dans la file
k =0
while not f.empty () :
a = f.get () # un élément est retiré de la file

Serge Bays 4 Lycée Les Eucalyptus



print (a.valeur, end=" ")
if a.gauche is not None:

f.put (a.gauche)

if a.droit is not None:

f.put (a.droit)

Test de 1a fonction :

>>> parcours_largeur (b)
A BCDETFG

Spécialité NSI en terminale

Regardons quel est le contenu de la file. Si on représente un sous-arbre par sa racine, on obtient :

on place 'A’ dans la file; m
on retire A’ et on place 'B’ et ’C’;
on retire B’ et on place 'D’ et 'E’;

o]
[C]

on retire C’ et on place 'F’;
on retire D’ et on place G’ ;

on retire 'E’;
on retire 'F’; G’
on retire ‘G’ ;

’D’
’E’

’E’
’F’

bl

2

T

Remarque : si on utilise une pile a la place d’une file, on obtient un parcours en profondeur préfixe.
Cette méthode est proposée en exercice.

Serge Bays

Lycée Les Eucalyptus



	Parcours d'un arbre binaire
	Parcours en profondeur d'abord
	Parcours en largeur d'abord


