Spécialité NSI en terminale

Spécialité NSI en terminale
Calculabilité et décidabilité

Ce sont des notions complexes mais capitales en informatique théorique. Elle sont liées a des théories
mathématiques et logiques difficiles. Cette section en présente un apergu.

Calculabilité

La notion de calculabilité¢ date de 1936.

Si on appelle « programme » la description d’une suite d’opérations a effectuer mécaniquement,
alors un programme peut étre représenté par une machine de Turing. Un nombre est calculable s’il peut
étre obtenu par une machine de Turing. En fait, Turing utilise le mot computable pour ce type de nombre,
et le différencie du mot calculable. Cette notion est précisée par la these de Church. Un nombre calculable
au sens intuitif, (avec des objets, des jetons, des cailloux, ou mentalement en faisant abstraction des objets),
correspond a un nombre calculable par une machine de Turing.

Le mot calculer vient du latin calculus qui signifie caillou. Que peut-on calculer ?

Une premiere réponse est : ce que I’on peut calculer avec des objets. Mais si cela se résume a des
additions et des soustractions, cela ne nous mene pas tres loin.

Une réponse plus réfléchie est de dire qu'une multiplication peut se décomposer en une série d’ad-
ditions, puis qu’une opération complexe peut se décomposer en une série d’opérations moins complexes
et ainsi de suite jusqu’a aboutir a des additions. On peut donc calculer beaucoup de choses, et méme des
nombres comme 7.

Mais alors tous les nombres sont-ils calculables ? La réponse a cette question est non.

Nombres calculables

Un nombre est donc calculable s’il existe une machine de Turing ou bien un programme qui nous
permet d’obtenir un par un la suite des chiffres de son écriture décimale qui peut étre infinie. Une machine
peut nous en donner une approximation a n’importe quelle précision souhaitée.

Les nombres calculables sont par exemple les nombres rationnels, les nombres comme /2, v/5 et plus
généralement les nombres qui sont solutions d’une équation P(z) = 0 ot P est un polyndme a coefficients
rationnels. Le nombre 7 est aussi un nombre calculable.

Cependant il existe beaucoup plus de nombres non calculables que de nombres calculables. La dif-
ficulté est d’en exhiber. Grégory Chaitin, qui a travaillé sur la premiere théorie algorithmique de 1’infor-
mation, comme les mathématiciens Solomonov et Kolmogorov dans les années 1960, a proposé comme
exemples les constantes nommées Oméga. Ce sont des nombres aléatoires tels qu'un algorithme ne peut
en donner qu’un nombre limité de décimales. Et il en existe une infinité.

Fonctions calculables

Une fonction f est calculable, si on peut obtenir f(u) en un nombre fini d’étapes pour tout u donné,
donc avec une succession d’opérations simples. Autrement dit, la fonction f est calculable si on peut
calculer f(u) avec une machine de Turing qui termine. Lorsque la machine s’arréte, f(u) est écrit sur le
ruban.

Comme pour le cas des nombres, il est démontré qu’il existe des fonctions non calculables. La preuve
repose sur le constat que I’ensemble des algorithmes est dénombrable alors que I’ensemble des fonctions
ne I’est pas. Précisons la signification du mot dénombrable : nous disons qu’un ensemble est dénombrable

Serge Bays 1 Lycée Les Eucalyptus



Spécialité NSI en terminale

si on peut numéroter ces éléments. La notion de dénombrabilité a été étudiée en particulier par le mathé-
maticien Georg Cantor.

Remarque

Tous les objets utilisés dans les programmes sont codés par des nombres entiers naturels stockés dans
une mémoire. Avec un ensemble d’opérations de base, on peut imaginer un modele mathématique d’un
ordinateur. Le premier de ces modeles date de 1936, c’est la machine de Turing. Tous les algorithmes
concevables peuvent étre exécutés par cette machine. Diverses théories ont été développées utilisant les
notions de récursivité ou le lambda-calcul par exemple. Les mathématiciens Alonzo Church et Stephen
Kleene ont montré que toutes les théories envisagées définissent les mémes fonctions calculables.

Problémes

On peut se demander si un probleme peut étre résolu a I’aide d’un algorithme. Pour répondre a cette
question, on ramene le probleme a une fonction. La question est alors de savoir si cette fonction est calcu-
lable ou pas.

Exemples

— Est-ce qu’il existe un algorithme ou un programme qui permet de savoir si un énoncé mathéma-

tique quelconque est un théoréme (on peut le prouver), ou pas? La fonction associée prend la
valeur 1 si c’est un théoréme et 0 sinon. On démontre que cette fonction n’est pas calculable.

— Est-ce qu’il existe un programme qui peut prendre en argument un programme P quelconque et
détermine si I’exécution du programme P termine ou pas ? La fonction associée prend la valeur 1
si I’exécution du programme P termine, et O si I’exécution ne termine pas. On démontre aussi que
cette fonction n’est pas calculable. Des précisions sont données par la suite.

Décidabilité
Notion

Les deux problemes donnés en exemple ci-dessus sont des problémes de décision.

La décidabilité est une notion utilisée en logique. Dans le cadre d’une théorie axiomatique, étant don-
née une proposition, il s’agit de démontrer qu’elle est vraie ou fausse. Si cette démonstration est possible,
on dit que la proposition est décidable. Sinon, on dit que la proposition est indécidable.

En algorithmique, un probleme de décision est une question a laquelle on répond par oui ou par non.
On dit qu’un probleme est décidable s’il existe un algorithme, c’est-a-dire une méthode qui se termine en
un nombre fini d’étapes, qui permet de répondre par oui ou par non a la question posée par le probleme.
Sinon on dit que le probleme est indécidable.

Examinons un exemple simple avec le programme qui suit ol n est un entier naturel.

def pair(n):
while n > O0:
n=n- 2
return n == 0

Ce programme permet de déterminer pour tout entier naturel n s’il est pair ou pas. La fonction renvoie
True sin est pair et False si n est impair.

Le probleme, ou la question posée, est : est-ce qu’il existe un programme qui prend en argument un
entier naturel n quelconque et détermine si cet entier naturel est pair ou pas?

Serge Bays 2 Lycée Les Eucalyptus



Spécialité NSI en terminale

C’est un probleme de décision et la réponse est oui. Donc ce probleme est décidable. La fonction
associée prend la valeur 1 ou O suivant que le nombre est pair ou non et cette fonction est calculable. Cette
fonction s’appelle la fonction caractéristique de 1’ensemble des nombres pairs.

La fonction caractéristique d’un ensemble est une fonction K telle, pour tout n, K(n) = 1sin
appartient a I’ensemble et K (n) = 0 sinon.

Nous pouvons aussi écrire un programme qui détermine pour n’importe quel entier si cet entier est
premier ou pas.
On dit que ces deux propriétés, étre pair et €tre premier, sont des propriétés décidables.

Si nous nous placons dans le domaine de la calculabilité, nous disons que I’ensemble des nombres
pairs et I’ensemble des nombres premiers sont des ensembles décidables. Nous disons aussi que les fonc-
tions caractéristiques de ces ensembles sont des fonctions calculables.

Hilbert a posé en 1928 la question en logique mathématique qu’on appelle le probleme de la décision,
en allemand « Entscheidungsproblem ». Peut-on déterminer par un algorithme si un énoncé quelconque est
vrai ou faux, si ¢’est un théoreme ?

Godel a démontré en 1931 qu’il existe des propriétés mathématiques non décidables dans n’importe
quel systeéme définissant 1’arithmétique.

Turing a aussi répondu négativement a la question de Hilbert en utilisant I’'indécidabilité d’un pro-
bleme nommé le probleme de I’arrét. Le probleéme de la décision et le probleme de I’arrét sont les deux
probleémes évoqués en exemple précédemment.

Dans son papier de 1936, Turing montre que si le probleme de la décision est décidable, alors la
question de I’arrét ou non d’une machine de Turing donnée peut &tre résolue par un algorithme. Autrement
dit, la terminaison ou non d’un programme quelconque peut étre déterminée par une machine de Turing.
Or, il a démontré dans ce méme papier qu’il n’existe pas de machine, ou de fonction, qui pour tous les
programmes écrirait 1 si le programme donné termine et 0 sinon. Cette fonction n’est pas calculable. Donc
le probleme de la décision n’est pas décidable.

Indécidabilité du probleme de I’arrét

La question est donc de savoir si on peut écrire un programme dont la fonction est d’analyser un
programme quelconque et déterminer si ce programme termine dans tous les cas, quelles que soient les
données fournies en entrées. Et ce programme doit permettre de répondre a la question pour tous les
programmes en un temps fini.

Rappelons que si par exemple un programme entre dans une boucle sans fin, alors il ne termine pas.
On dit que I’algorithme n’est pas valide.

La démonstration de Turing, basée sur les machines et la calculabilité est complexe. Ce qui suit ne
constitue pas une preuve mais donne quelques idées de la démarche suivie.

e Avec des programmes

Nous supposons que nous disposons d’un programme T qui prend en argument un programme P
quelconque avec des données d quelconques. Le programme P est représenté par son code prog et les
données d par un code data. Le programme T renvoie True si le programme P termine avec les données
detFalse sinon.

T (prog, data) vaut True siP (d) termine et False sinon.

Considérons alors un programme D qui prend en entrée un programme P quelconque. Le programme
D contient le code du programme T et produit le code prog du programme P. Ensuite il se comporte
comme le programme T. Puis, si le programme T renvoie True avec le code programme prog et le code
données prog, alors D rentre dans une boucle infinie, donc ne termine pas. (Il affiche par exemple True,
True,...). Etsi T renvoie False, alors le programme D affiche faux et termine.

D (P) bouclesi T (prog, prog) vaut TrueetD (P) terminesi T (prog, prog) vautFalse.

Serge Bays 3 Lycée Les Eucalyptus



Spécialité NSI en terminale

Que se passe-t-il si on donne au programme D le programme D lui-méme ? Soit T renvoie True, ce
qui signifie que D termine, mais alors dans ce cas D ne termine pas! Soit T renvoie False, ce qui signifie
que D ne termine pas, mais alors dans ce cas D termine !

Si T (D, D) vaut True, ce qui signifie que D (D) termine, alors D (D) boucle et si T (D, D) vaut
False, ce qui signifie que D (D) boucle, alors D (D) termine.

Ceci est absurde et on en déduit que le programme D ne peut pas exister, donc que le programme T
ne peut pas exister.

e Transposition avec des machines de Turing

Supposons que le probleme de I’arrét soit décidable. Il existe donc une machine M; qui, lorsqu’on
lui fournit les instructions d’une machine M, disons son numéro n, et une donnée initiale d, s’arréte, par
exemple en écrivant 1 si M s’arréte avec la donnée d, et en écrivant 0 dans le cas contraire.

Construisons alors (par la pensée) une machine My fonctionnant comme suit. En présence d’une
donnée n, M forme les instructions de la machine M de numéro n, suivi de n.

Nous avons donc le premier n qui identifie la machine et le deuxieme n qui identifie les données.

Ensuite, M5 a la méme fonctionnement que M7, mais si M aurait écrit 1, alors My calcule indéfini-
ment, et si M aurait écrit 0, alors Mo s’arréte.

Ainsi, M5 ne s’arréte pas si et seulement si on lui donne un n qui est I’identifiant d’une machine qui
s’arréte pour la donnée n.

Nous arrivons a la contradiction : M» est elle-méme une machine de Turing, et a donc un identifiant
n9. Donc si on fournit a M la donnée ny, My devrait calculer sans arrét si et seulement si ng est le numéro
d’une machine qui s’arréte pour la donnée ny. Mais la machine correspondant a I’identifiant ngy est la
machine M ! Donc My ne peut pas exister.

e Avec des fonctions en Python

En Python, on ne peut évidemment pas écrire une fonction termine qui renvoie True si le pro-
gramme prog avec les données data s’arréte et renvoie False sinon. Nous allons donc le faire en deux
étapes.

def machine (prog) :
if termine (prog, prog):
print ("termine")
while True: print ("boucle")
else:
print ("boucle indéfiniment")

def termine (prog, data):
return prog is data

L’expression termine (machine, machine) vaut True, autrement dit le programme termine
et pourtant machine (machine) boucle indéfiniment. (Appuyer sur Ctrl+C pour I’arréter).

Modifions la fonction termine :

def termine (prog, data):
return prog is not data

L’expression termine (machine, machine) vaut False, autrement dit le programme boucle
indéfiniment, et pourtant machine (machine) termine.

Serge Bays 4 Lycée Les Eucalyptus



