Spécialité NSI en terminale

Spécialité NSI en terminale
Notion de programme

On peut considérer Alan Turing (1912-1954) comme le pere de I’informatique. Cette science en effet
est née a partir de ses nombreux travaux dans les années 1930 et 1940. Mais il n’est pas seul dans cette
aventure. Les recherches de Church et Kleene, Mauchly, Eckert et von Neumann, ont aussi grandement
contribué a I’éclosion de la science informatique.

Turing s’est penché en particulier sur le probleme de la calculabilité et a fait le lien avec celui de
la décidabilité en arithmétique, probleme posé en 1928 par le mathématicien David Hilbert. En 1936, il
présente la machine de Turing, une expérience de pensée qui permet de préciser la notion de procédé
calculable, et a partir de cette notion, de définir clairement ce qu’il appelle un programme. Il démontre
I’indécidabilité du probleme de 1’arrét en prouvant qu’on ne peut pas répondre a cette question avec un
algorithme. Sa démonstration est liée a la notion de calculabilité qu’il définit par ce qui peut se calculer
mécaniquement avec un algorithme. La méme année mais de maniere différente, Alonzo Church démontre
aussi ce résultat dans sa thése. A cette fin, il utilise principalement des notions de logique développées par
Godel.

Plus tard, Alan Turing participe au débat sur I’intelligence artificielle et présente ce qu’on appelle le
test de Turing.

Un programme

Caractéristiques d’un programme

e Un programme est écrit dans un fichier. Ce fichier peut étre édité et lu. Le contenu peut étre du
texte plus ou moins compréhensible, le code source, qui est une suite d’instructions écrites dans un langage
de programmation. Avec un langage comme Python, ces instructions sont interprétées. Elles sont traduites
en des instructions en binaire, en langage machine. Dans le cas d’un langage nécessitant une compilation,
un fichier exécutable est créé. Dans la suite, aucune distinction n’est faite entre un fichier code source et
un fichier exécutable.

e Un programme peut étre exécuté seul ou utilisé par un autre programme. Il est alors considéré
comme une donnée par cet autre programme. Ainsi un interpréteur ou un compilateur prend un fichier, le
code source d’un programme, en argument.

e On peut distinguer un algorithme écrit dans un pseudo-langage d’un programme écrit dans un
certain langage de programmation. Les pseudo-langages qui sont utilisés dans la description d’algorithmes
ont souvent de fortes ressemblances avec le langage de programmation utilisé ensuite pour I’implémenta-
tion. Ainsi, le langage Python peut étre utilisé pour décrire des algorithmes et donc étre considéré comme
un pseudo-langage de description d’algorithme.

e Un fichier représentant un programme, comme un fichier représentant une image, peut-étre trans-
mis, téléchargé, enregistré sur un support.

On peut considérer plusieurs programmes qui interagissent entre eux et agissent sur des données dont
certaines sont d’autres programmes. C’est le cas d’un systéme d’exploitation installé sur une machine.

Remarque : un programme est exécuté par une machine. Le temps d’exécution est 1ié a la complexité
du programme, son colit. La calculabilité permet de savoir si une fonction peut étre calculée a 1’aide d’un
algorithme et donc si un probléme peut étre résolu par une machine ou pas.

Serge Bays 1 Lycée Les Eucalyptus

Spécialité NSI en terminale

Machine de Turing

Dans un papier publié en 1936, titré « On computable numbers, with an application to the Entschei-
dungsproblem », (« Sur les nombres calculables, avec une application au probléme de la décision »), Turing
décrit une machine qui effectue des calculs de maniére mécanique, sans intervention de I’homme a part
pour ’entrée des données et la lecture des résultats. Il décrit ensuite une machine universelle capable de
simuler n’importe quelle machine particuliere.

Cette machine abstraite imaginée par Turing comporte un ruban infini, une téte de lecture et écriture
et une table de transition. Le ruban est divisé en cases qui contiennent chacune un symbole d’un alphabet
fini. Par défaut les cases contiennent le symbole « blanc ». Le ruban peut se déplacer d’une case vers la
gauche ou vers la droite et la téte peut lire ou écrire un symbole sur la case du ruban qui lui fait face. L’état
de la machine décide du déplacement. Le nombre d’états possibles est fini et il y a un état de départ. La
table de transition indique I’action a exécuter lorsque la téte lit une case du ruban en fonction de 1’état
courant de la machine : quel symbole écrire, comment se déplacer, et quel est le nouvel état. Cette machine
représente d’une certaine maniére un programme.

On peut la représenter comme ci-dessous avec une double fleche qui symbolise la téte de lecture et
d’écriture au dessus du ruban, face a une case. Les symboles utilisés sont les nombres 0 et 1. La machine
est par exemple dans 1’état E4.

Y
B T e e e]

Nous allons voir deux exemples. Les tableaux qui suivent présentent des tables de transition. Dans
la premiére colonne, nous trouvons les différents états et dans la deuxieme colonne, ce que lit la machine.
Nous trouvons ensuite ce qu’écrit la machine dans la case courante, puis le déplacement et le nouvel état.
Le contenu des trois dernieres colonnes dépend du contenu des deux premieres.

Exemple 1
Etat || Lecture || Ecriture | Déplacement | Etat suivant
El blanc blanc gauche E2
0 1 gauche E2
E2 1 0 gauche E2
blanc blanc gauche Fin

La machine peut étre dans deux états E1 et E2. Si la machine est dans I’état E1 et contient un blanc,
elle écrit un blanc. Le ruban se déplace vers la gauche et la machine passe dans 1’état E2. Si la machine est
dans I’état E2 et qu’elle lit un O, elle écrit un 1 et si elle lit un 1, elle écrit un 0. Dans les deux cas le ruban
se déplace vers la gauche et la machine reste dans 1’état E2. Enfin si elle lit un blanc elle écrit un blanc, le
ruban se déplace vers la gauche et la machine s’arréte.

Les étapes successives sont représentées ci-dessous. Initialement la machine est dans 1’état E1.

U
L 2

La machine lit un blanc, donc écrit un blanc, passe dans 1’état E2 et le ruban se déplace vers la gauche.

I
e 0

La machine lit un 1, donc écrit un 0, reste dans I’état E2 et le ruban se déplace vers la gauche.

I
L 0

Serge Bays 2 Lycée Les Eucalyptus

Spécialité NSI en terminale

La machine lit un 0, donc écrit un 1, reste dans 1’état E2 et le ruban se déplace vers la gauche.

I
L

La machine lit un 1, donc écrit un 0, reste dans I’état E2 et le ruban se déplace vers la gauche.

U
L A

La machine lit un blanc, donc écrit un blanc, le ruban se déplace vers la gauche et la machine s’arréte.

. Y
S A

Exemple 2
Dans cet exemple la machine n’a que deux états.

Etat || Lecture | Ecriture | Déplacement | Etat suivant
El blanc 1 gauche E2
E2 blanc 0 gauche E1l

Si la machine est dans un état E1, elle écrit un 1, le ruban se déplace vers la gauche et la machine
passe dans un état E2. Si la machine est dans I’état E2, elle écrit un 0, le ruban se déplace vers la gauche et
la machine passe dans 1’état E1.

Les étapes successives sont représentées ci-dessous.

Y
L A

Y
R 0 A A A

Y
L A

Y
R A

Le ruban étant infini, la machine écrit 10101010..., avec autant de chiffres que 1’on souhaite. En
ajoutant un point devant ce nombre, on obtient le nombre 0.101010... écrit en binaire qui représente la
somme 1 x 1/2+0x1/4+1x1/8+40 x 1/16 + ... On montre que cette somme vaut 2/3.

D’une certaine maniere, une machine de Turing est un programme. Nous pouvons donc écrire en
langage Python un programme correspondant a une machine de Turing particuliere. Les parametres en
entrées sont un ruban représenté par une liste, le numéro de la case lue et un état. Chaque case du ruban
est un élément de la liste. Le numéro de la case est 'indice de I’élément. La machine commence par lire la
case d’indice O pour les deux exemples. Bien siir, la liste n’est pas infinie comme le ruban.

Pour les exemples des deux machines précédentes, nous utilisons une boucle while. Tant que la
machine n’est pas dans un état final, on applique les régles données par sa table de transition. Le symbole
«blanc » est représenté par la valeur None. On pourrait aussi le représenter par le caractere "b".

Commencons par la machine 2, dont la table de transition décrite dans I’exemple 2 est la plus simple,
avec un ruban ou il n’y a rien d’écrit.

Serge Bays 3 Lycée Les Eucalyptus

Spécialité NSI en terminale

def machine2 (ruban, i, etat):
while i < len (ruban):

if etat ==
if ruban[i] == None:
ruban[i] = 1
i=1+1
etat = 2
elif etat == 2:
if ruban[i] == None:
ruban[i] = 0
i=1+1
etat =1
else:
i = len(ruban) # traite une erreur sur 1l’état initial

Pour tester

r = 20 * [None] # le ruban est initialisé avec des blancs
machine2(r, 0, 1) # conditions initiales: case 0 du ruban et état El
print (r)

L affichage donne: (1, 0, 1, o0, 1, o, 1, o0, 1, 0, 1, 0, 1, 0, 1, 0O, 1, O,
1, 01.

Une autre maniere de procéder est d’écrire une fonction décrivant la table de transition en imaginant
qu’on appuie ensuite sur un bouton a chaque étape. Autrement dit, s’il y a n passages dans la boucle
while, cela revient a appuyer n fois sur le bouton, soit a appeler n fois la machine.

def transition2 (ruban, i, etat):
if etat ==

if ruban[i] == None
ruban[i] = 1
elif etat == 2
if ruban[i] == None
ruban[i] = 0

def machine2 (r) :
i, e=0, 1
etats = [2, 1]
while i < len(r):
transition2(r, i, e)

i =1+ 1

e = etats[e-1]
r = 20 * [None]
machine?2 (r)

print (r)

L’affichage obtenu est le méme que précédemment.

Serge Bays 4 Lycée Les Eucalyptus

Spécialité NSI en terminale

Finalement, on peut imaginer qu’une machine n’appelle pas la fonction de transition externe a chaque
étape, mais que la fonction de transition est pratiquement la machine et donc que la machine s’appelle elle-
méme. C’est le principe de récursivité qui est exposé dans un chapitre suivant.

def machine?2 (ruban, i, etat):
if i < len(ruban):
if etat == 1:
if ruban[i] == None:
ruban[i] =1
machine?2 (ruban,
elif etat == 2:
if ruban[i] == None:
ruban[i] = 0
machine?2 (ruban,
r = 20 x [None]
machine2 (r, 0, 1)
print (r)

Encore une fois, I’affichage est identique.

i+1,

a<Fil,

Considérons maintenant la machine 1 dont la table de transition est décrite dans I’exemple 1.
Le programme simulant la machine 1, ci-dessous, est écrit en suivant le modele de la derniere version
du programme simulant la machine 2. Ce programme est ensuite exécuté apres 1’exécution du programme

précédent, donc avec le ruban sorti de la machine 2.

def machinel (ruban, i, etat):
if i < len(ruban):
if eta 1:

if ruban[i]

machinel (ruban,

else:
machinel (ruban,
elif etat
if ruban[i] 0:
ruban[i] 1
machinel (ruban,
elif ruban[i] ==
ruban[i] 0
machinel (ruban,

else:
i

len (ruban)

machinel(r, 0, 1)

print (r)

None:

i+1, 2)

i+1, 2)

pour arréter la machine

L’ affichage donne: o, 13, o, 1, o, 1, o, 1, o, 1, o0, 1, 0, 1, 0, 1, 0, 1,
0, 17.
La machine a donc inversé les bits qui étaient écrits sur le ruban.
5 Lycée Les Eucalyptus

Serge Bays

Spécialité NSI en terminale

Nous convenons pour la suite qu’une machine de Turing est un modele abstrait de programme.

Machine de Turing universelle

Turing a montré qu’il existe une machine de Turing universelle qui peut simuler n’importe quelle
autre machine de Turing et donc exécuter n’importe quel programme. Pour cela, la table de transition,
le programme d’une machine particuliere, est donnée a la machine universelle. Ce programme devient
donc une donnée de la machine universelle, codée sur le ruban qu’elle va lire. Nous avons déja dans les
idées de Turing la notion de programme enregistré qui sera reprise par von Neumann : les données et les
programmes sont représentés de la méme maniere (sur le ruban) et un programme peut €tre une donnée
d’un autre programme, ce qui sera le cas avec les interpréteurs et compilateurs. La machine universelle est
donc un modele abstrait d’ordinateur, autrement dit elle décrit le fonctionnement d’un ordinateur.

Comme cela a été fait pour des machines particulieres, nous pouvons écrire un programme en Python
qui « simule » une machine de Turing universelle. La machine prend en argument une machine particuliere
m, (une fonction en Python), et un ruban r (représenté par une liste). La correspondance est loin d’étre
parfaite. Il s’agit juste d’aider a se faire une idée.

def machine(m, r):
m(r, 0, 1) # 0 est la case initiale lue, 1 est 1l’état initial

Pour terminer, voici quelques faits historiques. La machine a calculer mécanique de Pascal a été
concue en 1642. Les métiers a tisser mécaniques, programmables avec des cartes perforées, ont été mis au
point par Joseph Marie Jacquard en 1801. La machine mécanique programmable de Charles Babbage, a été
imaginée en 1834. Des constructions de calculateurs électroniques ont commencé dans les années 1930,
1940 : Atanasov et Berry en 1937 pour I’ABC, Zuse en 1941 pour la série Z1, Z2, 73, Eckert et Mauchly en
1943 pour I’ENIAC avec la contribution de Hopper. Ces derniers ont travaillé ensuite sur ’EDVAC en 1946,
a la suite des papiers signés par von Neumann sur I’architecture d’un ordinateur. Cette architecture gardera
le nom de von Neumann qui en a attribué lui-méme la paternité a Turing. Elle est toujours d’actualité dans
nos appareils numériques avec les programmes et les données enregistrés en mémoire exactement comme
le pensait Turing dans sa machine universelle.

Church et Turing ont montré séparément et de maniere différente que tous les problémes résolubles
par un algorithme sont résolubles par une machine de Turing universelle. Ceci revient a dire que tout ce
qui est calculable peut étre calculé par une machine de Turing universelle. La notion de calculabilité est
présentée dans la section qui suit.

Serge Bays 6 Lycée Les Eucalyptus

