
NSI première

NSI en première (2019-2020)
Résumé Types simples

1 Représentation numérique de l’information

2 Nombres entiers

3 Booléens

4 Nombres réels

5 Textes

Un ordinateur traite du texte. Un programme en Python peut également traiter du texte. Et il est
lui-même écrit sous forme de texte.

Le type str sert à représenter des chaînes de caractères en Python. Il y a plusieurs manières de définir
une variable de type str, en utilisant des guillemets, des apostrophes, etc. Si on écrit ch = "bon"+"jour",
on obtient la chaîne "bonjour" que l’on peut afficher dans l’interpréteur. La manière dont sont repré-
sentés les différents caractères en machine n’a pas vraiment d’importance. Mais pour lire du texte à partir
d’un fichier ou écrire du texte dans un fichier c’est différent.

5.1 Représentation

Une machine ne connaît que les nombres 0 et 1. Mais nous avons vu qu’elle pouvait ainsi utiliser
des nombres entiers naturels. Donc pour écrire du texte, une solution est d’associer chaque caractère à un
entier. Auparavant, il faut définir précisément l’ensemble des caractères à coder. On parle de "charset",
abréviation de l’anglais "character set".

Au début des années 1960, a été inventé le codage américain ASCII permettant de représenter sur 7
bits les caractères d’un clavier anglophone. Le "A" correspond au nombre 65, le "B" au nombre 66, . . . ,
le "a" au nombre 97, le chiffre 0 au nombre 48, etc. On peut visualiser les 128 caractères et les codes
correspondants avec les fonctions Python chr et ord.

>>> ord("k")
107
>>> chr(52)
’4’

En binaire, le caractère "A" est représenté par 100 0001 (65), le caractère "B" est représenté par
100 0010 (66), le caractère "C" est représenté par 100 0011 (67), etc. Le caractère "a" est représenté par
110 0001 (97), le caractère "b" est représenté par 110 0010 (98), le caractère "c" est représenté par 110 0011
(99), etc. Nous pouvons remarquer qu’entre les caractères en capitales et les caractères en minuscules, il
y a un seul bit de différence, le deuxième à partir de la gauche. Les nombres choisis ne le sont donc
probablement pas "au hasard" !

Ce système était suffisant pour la langue anglaise mais pas pour toutes les autres. De nombreux
systèmes d’encodage pour les autres langues ont donc été créés depuis, par exemple l’ISO 8859-1 (ou
latin-1) pour la langue française pour laquelle les accents sont importants. Ce système reprend les 128
codes ASCII (de 0 à 127), et en ajoute 128 (de 128 à 255). Le codage est donc fait sur 8 bits et par exemple
le "é " est représenté par le nombre 233. Le problème est que d’une langue à une autre les systèmes ne sont

Serge Bays 1 Lycée Les Eucalyptus

http://mathematice.fr

NSI première

pas compatibles excepté avec l’ASCII. Le système UNICODE a été créé au début des années 1990 pour
avoir une compatibilité mondiale, pour permettre des échanges de textes dans toutes les écritures. Pour
chaque langue, un identifiant numérique est affecté à un caractère. Il était prévu au début un codage sur 2
octets, soit 16 bits, donc 65536 valeurs possibles. Cela s’est avéré insuffisant et actuellement, on en est à
plus de 130 000 caractères codés. L’UNICODE utilise différents formats comme UTF-8 ou UTF-16. Pour
écrire par exemple un fichier texte avec l’extension html qui va produire une page Web, il est conseillé
d’utiliser l’encodage UTF-8 qui est totalement compatible avec l’ASCII.

5.2 Gestion des fichiers textes en Python

Ouverture et fermeture d’un fichier
La fonction open prend deux paramètres, le nom du fichier et le mode d’ouverture : ’w’ pour le mode

"écriture", ’r’ pour le mode "lecture" et ’a’ pour le mode "ajout", (write, read, append).

fic = open(’fichier’,’w’)
ou bien
fic = open(’fichier’,’r’)
ou bien
fic = open(’fichier’,’a’)

Il est essentiel de fermer un fichier qui a été ouvert. L’instruction est : fic.close().

Écriture et lecture
La méthode write prend en paramètre une chaîne de caractères (type str), par exemple :
fic.write("J’écrit dans un fichier").
Pour écrire sur plusieurs lignes, on utilise le caractère ’\n’ qui force un retour à la ligne. Par exemple :

fic.write("J’écrit dans un fichier\nA la fin, je le ferme."), ou plus lisible
fic.write("J’écrit dans un fichier" + "\n" + "A la fin, je le ferme.").

Si le fichier est fermé puis à nouveau ouvert en écriture, c’est un nouveau fichier qui est écrit. Ce
qui était écrit auparavant est perdu. Pour écrire à nouveau dans un fichier déjà fermé, on l’ouvre en mode
"ajout". Le texte est écrit à la suite du précédent.

fic = open(’fichier.txt’,’w’)
fic.write("J’écrit dans un fichier\nA la fin, je le ferme.")
fic.write("J’écrit à nouveau.")
fic.close()

fic = open(’fichier’,’a’)
fic.write("Je continue.")
fic.close()

L’extension ".txt" précise avec quel logiciel le fichier peut être ouvert, ici un éditeur de texte. Par
défaut, le fichier fichier.txt est créé dans le dossier où est enregistré le fichier Python.

Si les données à écrire sont de type numérique, il faut les convertir au préalable en type str.

a, b = 2, 5
fic = open(’fichier’,’w’)
fic.write(str(a) + " x " + str(b) + " = " + str(a*b))
fic.close()

Serge Bays 2 Lycée Les Eucalyptus

http://mathematice.fr

NSI première

Lecture
L’ouverture d’un fichier en mode lecture s’effectue avec la méthode read.
Plusieurs instructions sont disponibles : ch=fic.read(n) lit n caractères, ch=fic.read() lit

tout le fichier, ch=fic.readline() lit la ligne courante et passe à la suivante. Dans les trois cas, la
variable ch est une chaîne de caractères.

L’instruction ch=fic.readlines() lit toutes les lignes. Dans ce cas, la variable ch est une liste
de chaînes de caractères. Chaque élément est une ligne du fichier.

L’instruction ch=[x for x in fic] produit le même résultat.

Deux méthodes sur les chaînes de caractères sont importantes dans le traitement des données lues. Si
ch est une chaîne de caractères, alors :

ch.rstrip() supprime le caractère de fin de ligne (par exemple "\n") ;
ch.split(sep) coupe la chaîne ch suivant le délimiteur sep, et renvoie une liste de sous-chaînes

de ch. Avec ch="un,deux,trois", ch.split(’,’) renvoie [’un’,’deux’,’trois’].
Le séparateur par défaut est l’espace.

Si les données à lire sont des nombres qui doivent être utilisés dans des calculs, il faut les convertir
en type int ou en type float.

Voici un exemple :

fic = open("fichier.dat", "w")
fic.write(str(5) + "\t" + str(8.3) + "\t" + str(1e-4) + "\n")
fic.write(str(8) + "\t" + str(32.7) + "\t" + str(1e2))
fic.close()

fic = open("fichier.dat", "r")
for ligne in fic:

liste = ligne.rstrip().split("\t")
a, b, c = [float(x) for x in liste]
print(a, b, c)

fic.close()

Voyons maintenant où interviennent les notions d’encodage.
Voici un code en Python qui permet d’écrire dans deux fichiers test1.txt et test2.txt. Dans

le premier fichier, on écrit "bonjour" suivi d’un retour à la ligne (’\n’). Dans le second fichier, on écrit ’é
è ê à ù’ avec les caractères é, è, ê, à, ù séparés par des tabulations (’\t’) et suivis d’un retour à la
ligne.

f = open(’test1.txt’, ’w’)
f.write(’bonjour\n’)
f.close()

f = open(’test2.txt’, ’w’)
f.write(’é\tè\tê\tà\tù\n’)
f.close()

Nous ouvrons les deux fichiers avec le logiciel Notepad++, et si nous cliquons sur le menu Encodage,
nous constatons que le premier est encodé en UTF-8 et le second en ANSI. ANSI est un nom donné à
un encodage Windows (Windows-1252 ou CP1252). La chaîne de caractères qui comporte des caractères
accentués a été convertie pour être écrite.

Faisons un test dans l’interpréteur :

Serge Bays 3 Lycée Les Eucalyptus

http://mathematice.fr

NSI première

>>> ch = ’é\tè\tê\tà\tù\n’
>>> ch.encode(’cp1252’)
b’\xe9\t\xe8\t\xea\t\xe0\t\xf9\n’
>>> ch.encode(’utf-8’)
b’\xc3\xa9\t\xc3\xa8\t\xc3\xaa\t\xc3\xa0\t\xc3\xb9\n’

Écrivons dans un nouveau fichier avec un encodage UTF-8.

ch = ’é\tè\tê\tà\tù\n’
ch = ch.encode(’utf-8’)
f = open(’test3.txt’, ’wb’)
f.write(ch)
f.close()

La chaîne ch encodée en utf-8 est en fait une suite d’octets ou bytes. Pour écrire ces octets dans
un fichier, il est nécessaire d’utiliser un mode d’écriture différent. Avec le mode "w", la fonction write
prend en paramètre une variable de type str. Nous utilisons donc le mode "wb", pour une écriture en mode
binaire. La fonction write prend alors en paramètre une suite d’octets.

Nous vérifions alors avec Notepad++ que le fichier est encodé en UTF-8.

En ouvrant les fichiers avec un éditeur hexadécimal comme EditHexa, nous constatons que le contenu
du fichier test2.txt est e9 09 e8 09 ea 09 e0 09 f9 0d 0a et le contenu du fichier test3.txt est c3 a9 09 c3 a8
09 c3 aa 09 c3 a0 09 c3 b9 0a

Ceci signifie que le caractère é est encodé en CP1252 avec le nombre e9 en hexadécimal soit 233 en
décimal. Il est encodé en UTF-8 avec le nombre c3a9 en hexadécimal, soit 11000011 10101001 en binaire.
Sans entrer dans les détails, la norme précise qu’on ne garde que les parties entre parenthèses 110(00011)
10(101001), soit 5+6=11 bits. Ces 11 bits forment le nombre 00011 101001, qui est noté U+00E9. Ce
nombre est bien sûr 233 en décimal.

Ouvrons le fichier test2.txt avec Notepad++. L’encodage est en ANSI. Dans la barre des menus, nous
cliquons sur Encodage puis Convertir en UTF-8. Nous enregistrons le fichier et l’ouvrons avec EditHexa.
Le contenu est identique à celui du fichier test3.txt.

L’encodage est important particulièrement pour les fichiers destinés à être partagés. Une page d’un site
Web, écrite en HTML, est vue sur des machines différentes, avec des navigateurs différents. Par exemple,
si le fichier HTML est encodé en UTF-8 avec BOM, le caractère é est correctement affiché sur les trois
navigateurs Chrome, Firefox ou Microsoft Edge (successeur de Internet Explorer). Si le fichier HTML est
encodé en UTF-8 (sans BOM), il est affiché correctement avec le navigateur Chrome et ne l’est pas avec
les deux autres navigateurs. Si on précise dans l’entête du fichier HTML l’ensemble des caractères utilisés
en ajoutant entre les balises <head> et </head> la ligne <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/> alors l’affichage est correct dans les trois naviga-
teurs.

En Python la fonction ord renvoie le point de code Unicode d’un caractère. Donc ord(’é’) renvoie
le nombre 233. Notons que les nombres de 0 à 127 inclus sont aussi les points de code du codage ASCII
identiques à ceux du codage Unicode (famille UTF) et que les nombres de 0 à 255 inclus sont aussi
les points de code du codage ISO-8859-1 ou Latin-1. La fonction chr permet d’effectuer des tests. Par
exemple, chr(1604) est un caractère arabe.

Les fonctions encode et decode permettent de passer d’un encodage à un autre. On vérifie que
pour l’ASCII, il ne faut pas dépasser le code 127.

Serge Bays 4 Lycée Les Eucalyptus

http://mathematice.fr

NSI première

>>> ch="î"
>>> ch.encode()
b’\xc3\xae’
>>> ch.encode("ascii")
Traceback (most recent call last):

File "<pyshell#16>", line 1, in <module>
ch.encode("ascii")

UnicodeEncodeError: ’ascii’ codec can’t encode character ’\xee’
in position 0: ordinal not in range(128)
>>> ch.encode("ansi")
b’\xee’

>>> ch=b’\xc3\xae’
>>> ch.decode() # par défaut utf-8
’î’
>>> ch=b’\xee’
>>> ch.decode("ansi")
’î’

Exercice
On considère le code Python suivant qui crée un fichier HTML pour obtenir une page contenant les

caractères ééé :

f = open(’page.html’, ’w’)
ch = """<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8"/>
</head>
<body>
ééé
</body>

</html>"""
f.write(ch)
f.close()

Exécuter le fichier et ouvrir la page HTML avec différents navigateurs. L’affichage des caractères
est-il correct ?

Effectuer les modifications dans le programme pour avoir un affichage correct dans tous les naviga-
teurs.

Penser à l’encodage et au mode d’écriture dans un fichier.

Serge Bays 5 Lycée Les Eucalyptus

http://mathematice.fr

NSI première

Solution
Les navigateurs affichent des caractères "bizarres".
Il faut encoder la chaîne en UTF-8 avec l’instruction ch=ch.encode("utf-8").
Mais en mode "w" on ne peut pas écrire des octets. Il faut donc passer en mode "wb". On obtient le

programme :

f = open(’page.html’, ’wb’)
ch = """<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8"/>
</head>
<body>
ééé
</body>

</html>"""
ch = ch.encode("utf-8")
f.write(ch)
f.close()

Serge Bays 6 Lycée Les Eucalyptus

http://mathematice.fr

	Représentation numérique de l'information
	Nombres entiers
	Booléens
	Nombres réels
	Textes
	Représentation
	Gestion des fichiers textes en Python

