NSI premiere

NSI en premiere (2019-2020)
Résumé Types simples

1 Représentation numérique de I’information

2 Nombres entiers
3 Booléens

4 Nombres réels

S Textes

Un ordinateur traite du texte. Un programme en Python peut également traiter du texte. Et il est
lui-méme écrit sous forme de texte.

Le type str sert a représenter des chalnes de caracteres en Python. Il y a plusieurs manieres de définir
une variable de type str, en utilisant des guillemets, des apostrophes, etc. Sion écritch = "bon"+"jour",
on obtient la chalne "bonjour™ que I’on peut afficher dans I’interpréteur. La maniére dont sont repré-
sentés les différents caractéres en machine n’a pas vraiment d’importance. Mais pour lire du texte a partir
d’un fichier ou écrire du texte dans un fichier c’est différent.

5.1 Représentation

Une machine ne connait que les nombres 0 et 1. Mais nous avons vu qu’elle pouvait ainsi utiliser
des nombres entiers naturels. Donc pour écrire du texte, une solution est d’associer chaque caractére a un
entier. Auparavant, il faut définir précisément I’ensemble des caractéres a coder. On parle de "charset”,
abréviation de I’anglais "character set".

Au début des années 1960, a été inventé le codage américain ASCII permettant de représenter sur 7
bits les caracteres d’un clavier anglophone. Le "A" correspond au nombre 65, le "B" au nombre 66, ...,
le "a" au nombre 97, le chiffre 0 au nombre 48, etc. On peut visualiser les 128 caracteres et les codes
correspondants avec les fonctions Python chr et ord.

>>> ord ("k")
107
>>> chr (52)
/4!

En binaire, le caractere "A" est représenté par 1000001 (65), le caractere "B" est représenté par
1000010 (66), le caractere "C" est représenté par 1000011 (67), etc. Le caractere "a" est représenté par
1100001 (97), le caractere "b" est représenté par 110 0010 (98), le caractere "c" est représenté par 110 0011
(99), etc. Nous pouvons remarquer qu’entre les caractéres en capitales et les caractéres en minuscules, il
y a un seul bit de différence, le deuxieéme a partir de la gauche. Les nombres choisis ne le sont donc
probablement pas "au hasard" !

Ce systeme était suffisant pour la langue anglaise mais pas pour toutes les autres. De nombreux
systemes d’encodage pour les autres langues ont donc été créés depuis, par exemple I'ISO 8859-1 (ou
latin-1) pour la langue francaise pour laquelle les accents sont importants. Ce systéme reprend les 128
codes ASCII (de 0 a 127), et en ajoute 128 (de 128 a 255). Le codage est donc fait sur 8 bits et par exemple
le "é " est représenté par le nombre 233. Le probleme est que d’une langue a une autre les systémes ne sont

Serge Bays 1 Lycée Les Eucalyptus

http://mathematice.fr

NSI premiere

pas compatibles excepté avec I’ ASCII. Le systtme UNICODE a été créé au début des années 1990 pour
avoir une compatibilité mondiale, pour permettre des échanges de textes dans toutes les écritures. Pour
chaque langue, un identifiant numérique est affecté a un caractere. Il était prévu au début un codage sur 2
octets, soit 16 bits, donc 65536 valeurs possibles. Cela s’est avéré insuffisant et actuellement, on en est a
plus de 130 000 caracteres codés. "UNICODE utilise différents formats comme UTF-8 ou UTF-16. Pour
écrire par exemple un fichier texte avec I’extension html qui va produire une page Web, il est conseillé
d’utiliser I’encodage UTF-8 qui est totalement compatible avec 1’ ASCII.

5.2 Gestion des fichiers textes en Python

Ouverture et fermeture d’un fichier
La fonction open prend deux parametres, le nom du fichier et le mode d’ouverture : *w’ pour le mode
"écriture”, ’r’ pour le mode "lecture” et *a’ pour le mode "ajout", (write, read, append).

fic = open(’ fichier’,’"w’)
ou bien
fic = open(’ fichier’,’'r")
ou bien
fic = open ('’ fichier’,’a’)

Il est essentiel de fermer un fichier qui a été ouvert. L’instructionest : fic.close ().

Ecriture et lecture

La méthode write prend en parametre une chaine de caracteres (type str), par exemple :

fic.write("J’écrit dans un fichier").

Pour écrire sur plusieurs lignes, on utilise le caractére *\n’ qui force un retour a la ligne. Par exemple :
fic.write("J’écrit dans un fichier\nA la fin, je le ferme."), ou plus lisible
fic.write("J’écrit dans un fichier" + "\n" + "A la fin, je le ferme.").

Si le fichier est fermé puis a nouveau ouvert en écriture, c’est un nouveau fichier qui est écrit. Ce
qui était écrit auparavant est perdu. Pour écrire a nouveau dans un fichier déja fermé, on I’ouvre en mode

"ajout". Le texte est écrit a la suite du précédent.

fic = open(’ fichier.txt’,’ w’)

fic.write("J’écrit dans un fichier\nA la fin, je le ferme.")

fic.write("J’"écrit a nouveau.")
(

fic.close ()
fic = open(’ fichier’,’a’)
fic.write("Je continue.")
fic.close ()

L’extension ".txt" précise avec quel logiciel le fichier peut €tre ouvert, ici un éditeur de texte. Par
défaut, le fichier fichier.txt est créé dans le dossier ou est enregistré le fichier Python.

Si les données a écrire sont de type numérique, il faut les convertir au préalable en type str.

a, b =2, 5

fic = open ('’ fichier’,’'w’)

fic.write(str(a) + " x " 4+ str(b) + " =" + str(axb))
fic.close()

Serge Bays 2 Lycée Les Eucalyptus

http://mathematice.fr

NSI premiere

Lecture

L’ ouverture d’un fichier en mode lecture s’effectue avec la méthode read.

Plusieurs instructions sont disponibles : ch=fic.read (n) lit n caracteres, ch=fic.read () lit
tout le fichier, ch=fic.readline () lit la ligne courante et passe a la suivante. Dans les trois cas, la
variable ch est une chaine de caracteres.

L’instruction ch=fic.readlines () lit toutes les lignes. Dans ce cas, la variable ch est une liste
de chaines de caracteres. Chaque élément est une ligne du fichier.

L’instruction ch=[x for x in fic] produit le méme résultat.

Deux méthodes sur les chaines de caractéres sont importantes dans le traitement des données lues. Si
ch est une chaine de caracteres, alors :

ch.rstrip () supprime le caractere de fin de ligne (par exemple "\n");

ch.split (sep) coupe la chaine ch suivant le délimiteur sep, et renvoie une liste de sous-chaines
de ch. Avec ch="un, deux, trois",ch.split (’,’) renvoie [un’,’'deux’,’trois’].

Le séparateur par défaut est I’espace.

Si les données a lire sont des nombres qui doivent €tre utilisés dans des calculs, il faut les convertir
en type int ou en type float.
Voici un exemple :

fic = open("fichier.dat", "w")

fic.write(str(5) + "\t" + str(8.3) + "\t" + str(le-4) + "\n")
fic.write(str(8) + "\t" + str(32.7) + "\t" + str(le2))

()

fic.close

fic = open("fichier.dat", "r")

for ligne in fic:
liste = ligne.rstrip() .split ("\t")
a, b, ¢ = [float(x) for x in liste]
print (a, b, <)

fic.close ()

Voyons maintenant ol interviennent les notions d’encodage.
Voici un code en Python qui permet d’écrire dans deux fichiers test1.txt et test2.txt. Dans
le premier fichier, on écrit "bonjour" suivi d’un retour a la ligne (“ \n”). Dans le second fichier, on écrit *é

¢ & a U avec les caracteres é, &, &, a, U séparés par des tabulations (* \t’) et suivis d’un retour a la
ligne.

Hh

= open(’'testl.txt’, "w’)
.write ('bonjour\n’)
f.close ()

[

f = open(’'test2.txt’, "w')
.write ("é\te\té\ta\tu\n’)
f.close ()

[

Nous ouvrons les deux fichiers avec le logiciel Notepad++, et si nous cliquons sur le menu Encodage,
nous constatons que le premier est encodé en UTF-8 et le second en ANSI. ANSI est un nom donné a
un encodage Windows (Windows-1252 ou CP1252). La chaine de caractéres qui comporte des caracteres
accentués a été convertie pour &tre écrite.

Faisons un test dans I’interpréteur :

Serge Bays 3 Lycée Les Eucalyptus

http://mathematice.fr

NSI premiere

>>> ch = "é\te\té\ta\tu\n’

>>> ch.encode (' cpl252")

b’ \xe9\t\xe8\t\xea\t\xe0\t\xfo\n’

>>> ch.encode ("utf-8")

b’ \xc3\xa9\t\xc3\xa8\t\xc3\xaa\t\xc3\xa0\t\xc3\xb9\n’

Ecrivons dans un nouveau fichier avec un encodage UTF-8.

ch "é\te\té\ta\tu\n’

ch = ch.encode ("utf-8")

f = open(’'test3.txt’, ’"wb’)
f.write (ch)

f.close()

La chaine ch encodée en utf-8 est en fait une suite d’octets ou bytes. Pour écrire ces octets dans
un fichier, il est nécessaire d’utiliser un mode d’écriture différent. Avec le mode "w", la fonction write
prend en parametre une variable de type str. Nous utilisons donc le mode "wb", pour une écriture en mode
binaire. La fonction write prend alors en parametre une suite d’octets.

Nous vérifions alors avec Notepad++ que le fichier est encodé en UTF-8.

En ouvrant les fichiers avec un éditeur hexadécimal comme EditHexa, nous constatons que le contenu
du fichier test2.txt est €9 09 e8 09 ea 09 e0 09 {9 0d Oa et le contenu du fichier test3.txt est c3 a9 09 c3 a8
09 c3 aa 09 c3 a0 09 c3 b9 Oa

Ceci signifie que le caractere é est encodé en CP1252 avec le nombre €9 en hexadécimal soit 233 en
décimal. Il est encodé en UTF-8 avec le nombre c3a9 en hexadécimal, soit 11000011 10101001 en binaire.
Sans entrer dans les détails, la norme précise qu’on ne garde que les parties entre parenthéses 110(00011)
10(101001), soit 5+6=11 bits. Ces 11 bits forment le nombre 00011 101001, qui est noté U+00E9. Ce
nombre est bien siir 233 en décimal.

Ouvrons le fichier test2.txt avec Notepad++. L’encodage est en ANSI. Dans la barre des menus, nous
cliquons sur Encodage puis Convertir en UTF-8. Nous enregistrons le fichier et I’ouvrons avec EditHexa.
Le contenu est identique a celui du fichier test3.txt.

L’encodage est important particulierement pour les fichiers destinés a étre partagés. Une page d’un site
Web, écrite en HTML, est vue sur des machines différentes, avec des navigateurs différents. Par exemple,
si le fichier HTML est encodé en UTF-8 avec BOM, le caractere € est correctement affiché sur les trois
navigateurs Chrome, Firefox ou Microsoft Edge (successeur de Internet Explorer). Si le fichier HTML est
encodé en UTF-8 (sans BOM), il est affiché correctement avec le navigateur Chrome et ne I’est pas avec
les deux autres navigateurs. Si on précise dans 1’entéte du fichier HTML I’ensemble des caracteres utilisés
en ajoutant entre les balises <head> et </head> laligne <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/> alors I’affichage est correct dans les trois naviga-
teurs.

En Python la fonction ord renvoie le point de code Unicode d’un caractere. Donc ord(’é’) renvoie
le nombre 233. Notons que les nombres de 0 a 127 inclus sont aussi les points de code du codage ASCIIL
identiques a ceux du codage Unicode (famille UTF) et que les nombres de 0 a 255 inclus sont aussi
les points de code du codage ISO-8859-1 ou Latin-1. La fonction chr permet d’effectuer des tests. Par
exemple, chr (1604) est un caractere arabe.

Les fonctions encode et decode permettent de passer d’un encodage a un autre. On vérifie que
pour I’ASCII, il ne faut pas dépasser le code 127.

Serge Bays 4 Lycée Les Eucalyptus

http://mathematice.fr

>>> ch="31"

>>> ch.encode ()

b’ \xc3\xae’

>>> ch.encode ("ascii")

ch.encode ("ascii")

UnicodeEncodeError: ’"ascii’

>>> ch.encode ("ansi")
b’ \xee’

>>> ch=b’ \xc3\xae’

>>> ch=b’ \xee’
>>> ch.decode ("ansi")

Exercice

Traceback (most recent call last):

File "<pyshell#16>", line 1, in <module>

codec can’t encode character
in position 0: ordinal not in range (128)

>>> ch.decode () # par défaut utf-8

NSI premicre

"\xee’

On considere le code Python suivant qui crée un fichier HTML pour obtenir une page contenant les

caracteres ééé :

f = open(’page.html’, "w’)
ch = """<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
</head>
<body>
ééé
</body>
</html>"""
f.write(ch)
f.close()

Exécuter le fichier et ouvrir la page HTML avec différents navigateurs. L’affichage des caracteres

est-il correct ?

Effectuer les modifications dans le programme pour avoir un affichage correct dans tous les naviga-

teurs.

Penser a I’encodage et au mode d’écriture dans un fichier.

Serge Bays

Lycée Les Eucalyptus

http://mathematice.fr

Solution

Les navigateurs affichent des caracteres "bizarres".

NSI premicre

I1 faut encoder la chaine en UTF-8 avec I'instruction ch=ch.encode ("utf-8").
Mais en mode "w" on ne peut pas écrire des octets. Il faut donc passer en mode "wb". On obtient le

programme :

f = open(’'page.html’, "wb’)
ch = """<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
</head>
<body>
ééé
</body>
</html>"""
ch = ch.encode ("utf-8")
f.write (ch)
f.close()

Serge Bays

Lycée Les Eucalyptus

http://mathematice.fr

	Représentation numérique de l'information
	Nombres entiers
	Booléens
	Nombres réels
	Textes
	Représentation
	Gestion des fichiers textes en Python

