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Equations
Polynômes

Equations du second degré à coefficients réels
Cas particulier

Théorème

Dans C, l’équation az2 + bz + c = 0, a 6= 0, a, b, c réels,
a toujours des solutions.

On note ∆ le discriminant de cette équation :

∆ = b2 − 4ac

• si ∆ > 0, l’équation a deux solutions réelles :

z1 = . . . . . . . . . . . . et z2 = . . . . . . . . . . . .
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• si ∆ = 0, l’équation a une solution double réelle :

z1 = z2 = . . . . . .

• si ∆ < 0, l’équation a deux solutions complexes conju-
guées :

z1 = . . . . . . . . . . . . et z2 = . . . . . . . . . . . . avec z2 = . . .
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Conséquence
Dans C, le trinôme az2 + bz + c se factorise toujours sous la
forme : az2 + bz + c = a(z − z1)(z − z2).
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Démonstration
On écrit le trinôme az2 + bz + c sous la forme canonique :

az2 + bz + c = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Puisque a 6= 0, résoudre dans C l’équation az2 + bz + c = 0,
c’est résoudre l’équation

. . . . . . . . . . . . . . . . . . . . . . . .
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• si ∆ > 0 ou si ∆ = 0, on sait que l’équation a deux solutions
dans R et deux seulement (distinctes ou égales). Elle a donc
deux solutions complexes et deux seulement puisque R est
inclus dans C.
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• si ∆ < 0, alors
√
−∆ existe et avec i2 = −1, on a

. . . . . . . . . . . .

Donc :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ainsi l’équation a deux solutions :

z1 = . . . . . . . . . . . . . . . et z2 = . . . . . . . . . . . . . . . avec z2 = z1.
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Exemple :
Résoudre dans l’équation : 4z2 − 12z + 153 = 0

On calcule le discriminant :
∆ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L’équation admet deux solutions complexes conjuguées :

z1 = . . . . . . . . . . . . . . . . . . et z2 = . . . . . . . . . . . . . . . . . .

S = . . . . . . . . . . . . . . .
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Théorème

Dans C, l’équation z2 = c, a exactement deux solutions si
c 6= 0.

• si c > 0, l’équation a deux solutions réelles opposées :

z1 = . . . . . . . . . . . . et z2 = . . . . . . . . . . . .

• si c < 0, l’équation a deux solutions imaginaires :

z1 = . . . . . . . . . . . . et z2 = . . . . . . . . . . . .
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Factorisation d’un polynôme

Définition
Un polynôme de degré n est une fonction P définie par
P(x) = anxn + an−1xn−1 + . . . + a1x + a0
où les nombres a0, a1, . . . , an−1, an sont des réels avec an non
nul.

Les nombres a0, a1, . . . , an−1, an sont appelés les coefficients
du polynôme P.

Un polynôme est nul si, et seulement si, tous ses coefficients
sont nuls.

Deux polynômes sont égaux si, et seulement si, ils ont les
mêmes coefficients.
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Définition : un nombre a réel ou complexe est racine d’un
polynôme P si, et seulement si, P(a) = 0.

Définition : si P est un polynôme et a un réel ou un complexe,
le polynôme P est factorisable par x − a si P(x) = (x − a)Q(x)
où Q est un polynôme.

Théorème : si a est une racine d’un polynôme P alors P est
factorisable par x − a.

Théorème : un polynôme de degré n admet au plus n racines.
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Exemple : z2 − a2 = (z − a)(z + a)

Théorème
Pour tout z et pour tout a complexes, pour tout n entier naturel
non nul :

zn−an = (z−a)(zn−1+zn−2a+zn−3a2+. . .+z2an−3+zan−2+an−1
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