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Equations Equations du second degré a coefficients réels

Cas particulier

Théoréme

Dans C, I'équation az?> + bz + ¢ =0, a # 0, a, b, ¢ réels,
a toujours des solutions.

On note A le discriminant de cette équation :
A = b? —4ac

e si A > 0, 'équation a deux solutions réelles :
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Equations Equations du second degré a coefficients réels

Cas particulier

e si A =0, I'équation a une solution double réelle :
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Cas particulier

e si A =0, I'équation a une solution double réelle :
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Equations Equations du second degré a coefficients réels

Cas particulier

e si A =0, I'équation a une solution double réelle :

Zi =2 = —b

1T %7 22
e si A <0, 'équation a deux solutions complexes conju-
guées :
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Equations Equations du second degré a coefficients réels

Cas particulier

e si A =0, I'équation a une solution double réelle :

2= zp= 2
1T %7 24

e si A <0, I'équation a deux solutions complexes conju-

guées :

Zy = avec zp = z¢

—b—iv—-A —b+iv—-A
—_— etz = ——————
2a 2a
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Equations Equations du second degré a coefficients réels

Cas particulier

e si A =0, I'équation a une solution double réelle :
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Equations Equations du second degré a coefficients réels

Cas particulier

Conséquence
Dans C, le trinéme az? + bz + ¢ se factorise toujours sous la
forme : az’ + bz +c=a(z - z)(z — z).
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Equations Equations du second degré a coefficients réels

Cas particulier

Démonstration
On écrit le trinéme az® + bz + ¢ sous la forme canonique :

AZ2 Dz Cm o

Serge Bays Diapor.



Equations Equations du second degré a coefficients réels

Cas particulier

Démonstration
On écrit le trinéme az? + bz + ¢ sous la forme canonique :
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Equations Equations du second degré a coefficients réels

Cas particulier

Démonstration
On écrit le trinéme az? + bz + ¢ sous la forme canonique :

atbzic—al|(z+2 Pt —al(z+ 2 A
N 2a 432 N 2a 422

Puisque a # 0, résoudre dans C I'équation az® + bz + ¢ = 0,
c’est résoudre I'équation
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Equations Equations du second degré a coefficients réels

Cas particulier

Démonstration
On écrit le trinéme az? + bz + ¢ sous la forme canonique :
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Equations Equations du second degré a coefficients réels

Cas particulier

e siA > 0ousiA=0,on sait que I'équation a deux solutions
dans R et deux seulement (distinctes ou égales). Elle a donc
deux solutions complexes et deux seulement puisque R est
inclus dans C.
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Equations Equations du second degré a coefficients réels

Cas particulier

e si A <0,alors v/—A existe etavec ¥ = —1,0n a
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Equations Equations du second degré a coefficients réels

Cas particulier

e si A <0,alors v/—A existe etavec ¥ = —1,0n a

(iV=D0)? = A.
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Equations Equations du second degré a coefficients réels

Cas particulier

e si A <0,alors v/—A existe etavec ¥ = —1,0n a

(iv—A)? = A. Donc :
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Equations Equations du second degré a coefficients réels

Cas particulier

e siA<0,alors v—A existe etavec ¥ = —1,0n a

(iv—A)? = A. Donc :

b\2 A b\2 [ivV=DB\?
<Z+za> ‘4a2—<”za> ‘( 2a )

(e 2B (a4 £ )

2a 2a

2a 2a
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Equations Equations du second degré a coefficients réels

Cas particulier

e siA<0,alors v—A existe etavec ¥ = —1,0n a

(iv—A)? = A. Donc :

b\2 A b\2 [ivV=DB\?
<Z+2a> ‘4a2—<”za> ‘( 2a )

(e 2B (a4 £ )

2a 2a

2a 2a

Ainsi I'’équation a deux solutions :

24 = etzo=............... avec zp = z3.
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Equations Equations du second degré a coefficients réels

Cas particulier

e siA <0,alors /—A existe etavec i’ = —1,on a

(iv—A)? = A. Donc :

Lo b A b\ (VRN
2a 422 2a 2a

b iv- iv—A
_<Z+2a_ 2a )( +?a+ 2a >
Ainsi I'équation a deux solutions :
—b—iv-A —b+ivV-A _
21:271a etzzzzila avec z» = zy.
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Equations Equations du second degré a coefficients réels

Cas particulier

Exemple :
Résoudre dans I'équation : 42> — 12z + 153 =0

On calcule le discriminant :
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A = (—12)? — 4 x 4 x 153 = —2304 = (48i).
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Cas particulier

Exemple :
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Cas particulier

Exemple :
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Equations Equations du second degré a coefficients réels

Cas particulier

Exemple :
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Equations Equations du second degré a coefficients réels

Cas particulier

Exemple :
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Equations Equations du second degré a coefficients réels
Cas particulier

Théoréme

Dans C, I'équation z2 = ¢, a exactement deux solutions si
c#0.

e sic > 0, I'’équation a deux solutions réelles opposées :
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Définitions
Polynémes Factorisation d’un polynéme

Définition

Un polynébme de degré n est une fonction P définie par
P(X) =apx" + «3,7_1Xn_1 +... taix+a

ou les nombres ay, ay, ..., an_1, an sont des réels avec a, non
nul.
Les nombres ag, ai, ..., an_1, an sont appelés les coefficients

du polynéme P.

Un polyndme est nul si, et seulement si, tous ses coefficients
sont nuls.

Deux polynédmes sont égaux si, et seulement si, ils ont les
mémes coefficients.
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Définitions
Polynémes Factorisation d’'un polynéme

Définition : un nombre a réel ou complexe est racine d’un
polynéme P si, et seulement si, P(a) = 0.

Définition : si P est un polynéme et a un réel ou un complexe,
le polynbme P est factorisable par x — a si P(x) = (x — a)Q(x)
ou Q est un polynéme.

Théoreme : si a est une racine d’'un polyndme P alors P est
factorisable par x — a.

Théoréme : un polyndme de degré n admet au plus n racines.
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Définitions

Polynémes Factorisation d’'un polynéme

Exemple : 22 — 22 = (z — a)(z + a)

Théoreme
Pour tout z et pour tout a complexes, pour tout n entier naturel
non nul :

Z"-a" = (z—a)(2" ' +2" 2at2" 3 AP+ 422" 34 za" 2!
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