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Représentation géométrique d’un nombre complexe
Forme trigonométrique d’un nombre complexe

Définition
Remarques
Propriétés

Dans le plan muni d’un repère orthonormé direct (O;
→
u ,
→
v ) :

• à tout complexe z = a + b i avec a et b réels, on associe le
point M(a;b) et le vecteur

→
w (a;b) appelés . . . . . . . . . . . .

et
. . . . . . . . . . . . . . . de z.

• à tout point M(a;b) et à tout vecteur
→
w (a;b) on associe le

nombre complexe z = a + b i, appelé . . . . . . . . . . . . et
. . . . . . . . . . . .

Le plan est alors appelé plan complexe.
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• Le point image d’un réel appartient à l’. . . . . . . . . . . . . . . . . . . . .

Dans le plan complexe, l’axe des abscisses est appelé axe . . .
. . . . . .
• Le point image d’un imaginaire pur appartient à l’. . . . . . . . .
. . . . . . . . . . . . Dans le plan complexe, l’axe des ordonnées est
appelé axe des . . . . . . . . . . . .
• Si M est le point d’affixe z = x + i y et N est le point d’affixe
z = x − i y , alors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Le plan complexe est muni d’un repère orthonormé direct
(O;

→
u ,
→
v ).

On considère les points A et B d’affixes respectives zA et zB.
Alors :

• Le vecteur
−→
AB a pour affixe . . . . . . . . .

• Le milieu I du segment [AB] a pour affixe . . . . . . . . . . . . . . .
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On considère les vecteurs
→
w et

→
w ′ d’affixes respectives z et z ′,

et le réel λ.
•

→
w +

→
w ′ a pour affixe . . . . . . . . .

• λ
→
w a pour affixe . . . . . .

Preuve :
Il s’agit simplement d’une autre écriture des propriétés déjà
connues pour les coordonnées.
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Module et argument
Propriétés du module
Ensemble des nombres complexes de module 1
Forme trigonométrique
Passage d’une forme à l’autre

Le plan complexe est muni d’un repère orthonormé direct
(O;

→
u ,
→
v ).

Définition
Soit z = x + i y un nombre complexe et M son image dans le
plan complexe.
Le module de z, noté |z|, est le nombre positif

√
x2 + y2 .

C’est donc . . . . . . . . . . . . . . . . . . . . . . . . . . .

Si z est non nul, on appelle argument de z, noté arg(z), toute
mesure en radian de . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
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Le plan complexe est muni d’un repère orthonormé direct
(O;

→
u ,
→
v ).

Définition
Soit z = x + i y un nombre complexe et M son image dans le
plan complexe.
Le module de z, noté |z|, est le nombre positif

√
x2 + y2 .

C’est donc la distance OM : |z| = OM.
Si z est non nul, on appelle argument de z, noté arg(z), toute

mesure en radian de l’angle orienté (
→
u ;
−→
OM) :

arg(z) = (
→
u ;
−→
OM) (2π).
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Exemples

| i | = . . . arg( i ) = . . . (2π)

| − 3| = . . . arg(−3) = . . . (2π)
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Interprétation géométrique du module

Si M et M ′ sont deux points du plan d’affixes respectives z et
z ′, alors MM ′ = |z ′ − z|.
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Propriétés
• Pour tout nombre complexe z, zz = . . . . . . . . . . . . . . .

• Pour tout nombre complexe z, | − z| = . . . . . . . . .

• Pour tout nombre complexe non nul z :

arg(−z) = . . . . . . . . . . . . . . .

arg(z) = . . . . . . . . . . . . . . .
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arg(−z) = arg(z) + π (2π)

arg(z) = . . . . . . . . . . . . . . .
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• z est un réel, (z 6= 0), si et seulement si . . . . . . . . . . . . . . .

• z est un imaginaire pur, (z 6= 0), si et seulement si
. . . . . . . . . . . . . . .
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• z est un réel, (z 6= 0), si et seulement si arg(z) = 0 (π).

• z est un imaginaire pur, (z 6= 0), si et seulement si
. . . . . . . . . . . . . . .
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On considère z 6= 0 et z ′ 6= 0.

• Produit

|z × z ′| = . . . . . . . . .

• Puissance

|zn| = . . .

• Inverse∣∣∣∣∣1z
∣∣∣∣∣ = . . . . . .
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On considère z 6= 0 et z ′ 6= 0.
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• Puissance
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• Quotient∣∣∣∣∣ z
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∣∣∣∣∣ = . . .

• Somme
Inégalité triangulaire : |z + z ′| ≤ . . . . . . . . .
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On note U l’ensemble des nombres complexes z tels que
|z| = 1.

Propriétés

Si z et z ′ sont éléments de U, alors zz ′ et
1
z

sont éléments de U.

En effet :
si |z| = 1 et |z ′| = 1 alors |zz ′| = |z||z ′| = 1

et

∣∣∣∣∣ 1
z

∣∣∣∣∣ = 1
|z|

= 1
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Remarque

Les nombres complexes éléments de U sont exactement les
nombres qui s’écrivent sous la forme z = cosα+ i sinα où α
est un réel quelconque.

On vérifie que si z = cosα+ i sinα alors |z| = 1 :

|z| = | cosα+ i sinα| =
√
(cosα)2 + (sinα)2 = 1
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Définition
Tout nombre complexe non nul s’écrit sous la forme suivante,
dite . . . . . . . . . . . . . . . . . . . . .

:

z = r(cos θ + i sin θ) avec r = |z| et θ = arg(z) (2π)
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Tout nombre complexe non nul s’écrit sous la forme suivante,
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z = r(cos θ + i sin θ) avec r = |z| et θ = arg(z) (2π)
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• Si la forme algébrique de z est z = a + b i, avec z 6= 0,
alors sa forme trigonométrique est : z = r(cos θ + i sin θ) avec

r = . . . . . . . . .

et θ tel que cos θ = . . . . . . . . . . . . . . . et sin θ = . . . . . . . . . . . . . . .

Serge Bays Diaporama



Représentation géométrique d’un nombre complexe
Forme trigonométrique d’un nombre complexe

Module et argument
Propriétés du module
Ensemble des nombres complexes de module 1
Forme trigonométrique
Passage d’une forme à l’autre

• Si la forme algébrique de z est z = a + b i, avec z 6= 0,
alors sa forme trigonométrique est : z = r(cos θ + i sin θ) avec

r =
√

a2 + b2

et θ tel que cos θ = . . . . . . . . . . . . . . . et sin θ = . . . . . . . . . . . . . . .

Serge Bays Diaporama



Représentation géométrique d’un nombre complexe
Forme trigonométrique d’un nombre complexe

Module et argument
Propriétés du module
Ensemble des nombres complexes de module 1
Forme trigonométrique
Passage d’une forme à l’autre

• Si la forme algébrique de z est z = a + b i, avec z 6= 0,
alors sa forme trigonométrique est : z = r(cos θ + i sin θ) avec

r =
√

a2 + b2

et θ tel que cos θ = . . . . . . . . . . . . . . .

et sin θ = . . . . . . . . . . . . . . .

Serge Bays Diaporama



Représentation géométrique d’un nombre complexe
Forme trigonométrique d’un nombre complexe

Module et argument
Propriétés du module
Ensemble des nombres complexes de module 1
Forme trigonométrique
Passage d’une forme à l’autre

• Si la forme algébrique de z est z = a + b i, avec z 6= 0,
alors sa forme trigonométrique est : z = r(cos θ + i sin θ) avec

r =
√

a2 + b2

et θ tel que cos θ =
a
r
=

a
√

a2 + b2

et sin θ = . . . . . . . . . . . . . . .

Serge Bays Diaporama



Représentation géométrique d’un nombre complexe
Forme trigonométrique d’un nombre complexe

Module et argument
Propriétés du module
Ensemble des nombres complexes de module 1
Forme trigonométrique
Passage d’une forme à l’autre

• Si la forme algébrique de z est z = a + b i, avec z 6= 0,
alors sa forme trigonométrique est : z = r(cos θ + i sin θ) avec

r =
√

a2 + b2

et θ tel que cos θ =
a
r
=

a
√

a2 + b2
et sin θ = . . . . . . . . . . . . . . .

Serge Bays Diaporama



Représentation géométrique d’un nombre complexe
Forme trigonométrique d’un nombre complexe

Module et argument
Propriétés du module
Ensemble des nombres complexes de module 1
Forme trigonométrique
Passage d’une forme à l’autre

• Si la forme algébrique de z est z = a + b i, avec z 6= 0,
alors sa forme trigonométrique est : z = r(cos θ + i sin θ) avec

r =
√

a2 + b2

et θ tel que cos θ =
a
r
=

a
√

a2 + b2
et sin θ =

b
r
=

b
√

a2 + b2
.

Serge Bays Diaporama



Représentation géométrique d’un nombre complexe
Forme trigonométrique d’un nombre complexe

Module et argument
Propriétés du module
Ensemble des nombres complexes de module 1
Forme trigonométrique
Passage d’une forme à l’autre

• Si la forme algébrique de z est z = a + b i, avec z 6= 0,
alors sa forme trigonométrique est : z = r(cos θ + i sin θ) avec

r =
√

a2 + b2

et θ tel que cos θ =
a
r
=

a
√

a2 + b2
et sin θ =

b
r
=

b
√

a2 + b2
.

Serge Bays Diaporama



Représentation géométrique d’un nombre complexe
Forme trigonométrique d’un nombre complexe

Module et argument
Propriétés du module
Ensemble des nombres complexes de module 1
Forme trigonométrique
Passage d’une forme à l’autre
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