
http://mathematice.fr

Informatique en CPGE (2018-2019)
TP 5 : représentation des nombres

1 Nombres entiers naturels

Exercice 1 : division euclidienne.
Ecrire une fonction divise, prenant en paramètres un entier naturel a et un entier naturel b non nul,

qui calcule et renvoie le quotient et le reste obtenus par la division euclidienne de a par b. Il est interdit
d’utiliser les opérateurs // et % ni la fonction divmod. (divmod(a,b) renvoie (a//b,a%b))

Exercice 2 : codage d’un entier naturel.
1. Ecrire une fonction qui renvoie l’écriture en base deux d’un nombre entier naturel exprimé en base

dix. Le paramètre en entrée est de type int et la valeur renvoyée en sortie de type str.

2. Ecrire une fonction test qui prend en paramètre une chaîne de caractères représentant l’écriture
binaire d’un entier naturel et renvoie True s’il s’agit bien d’une écriture correcte en base deux et
False sinon.

3. Ecrire une fonction qui renvoie l’écriture en base dix d’un nombre entier naturel exprimé en base
deux. Le paramètre en entrée est de type str et la valeur renvoyée en sortie de type int.

2 Nombres entiers relatifs

Exercice 3 : opérations sur les bits.

1. L’opération ~a inverse les valeurs des bits du nombre a. Pour différentes valeurs de a, tester les
instructions ~a, -(a+1), ~(~a), ~a+1, ~(a-1), et commenter les résultats.
Expliquer en particulier pourquoi ~a+a vaut −1.

2. L’opérateur & compare deux nombres bit à bit, écrit 1 chaque fois que les deux bits sont égaux à 1
et écrit 0 sinon. Par exemple 3 & 2 donne 2, 5 & 2 donne 0.
Expliquer pourquoi ~a & a vaut 0.

3. L’opérateur ∧ compare deux nombres bit à bit, écrit 1 chaque fois que les deux bits correspondants
sont différents et écrit 0 sinon. Par exemple 4 ∧ 3 vaut 7, 7 ∧ 2 vaut 5.
Expliquer pourquoi a ∧ b ∧ b vaut a.

Exercice 4 : codage d’un entier relatif.
Ecrire une fonction qui renvoie le codage en binaire d’un entier relatif exprimé en base dix. Le nombre

en entrée est de type int et la sortie de type str.
La fonction prend un deuxième paramètre qui représente le nombre de bits utilisés pour coder les

nombres et renvoie False si le nombre ne peut pas être codé.
Rappel : si le codage se fait sur n bits, on peut coder les nombres positifs r de 0 à 2n−1 − 1 (par

l’écriture en binaire de r) et les négatifs r de−2n−1 à−1 (par l’écriture en binaire de r+2n). Le programme
doit donc tester si r ∈ [0 ; 2n−1 − 1] ou si r ∈ [−2n−1 ;−1]. On peut alors utiliser l’exercice 2.

Attention : par exemple, sur 8 bits, si r = 5, le programme doit afficher en sortie 00000101.

3 Nombres réels

Exercice 5 : approximations d’un réel.
On considère la suite (un) définie par u0 = 3 et un+1 = 1

2(un + 2
un

). On démontre que cette
suite est décroissante et minorée, donc convergente. Ecrire un algorithme qui permet de calculer u100, le
programmer et l’exécuter. Emettre une conjecture sur la limite de cette suite.

Que penser du test sqrt(2)*sqrt(2)==2?

Serge Bays 1 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

En utilisant la fonction Decimal du module decimal, donner l’écriture décimale du nombre
a=sqrt(2)*sqrt(2).

Note 1 : pour comparer deux nombres l’instruction x==y ne peut pas convenir ; tester par exemple
1+2.22e-16==1 et 1+1e-16==1. Donc plutôt que tester si deux flottants sont égaux, on testera si deux
flottants sont assez proches l’un de l’autre, par exemple avec le test : abs(x-y)<0.0001.

Note 2 : il y a un risque d’avoir des nombres flottants trop grands. L’expression 10.0**400 af-
fiche une erreur "overflow", l’expression 10.0**100*10.0**300 affiche "inf". Attention, la com-
mande10**400 affiche bien "1" suivi de 40 zéros. (Les nombres de type int sont illimités en Python)

Exercice 6 : le codage d’un flottant x est en norme IEEE 754 sur 64 bits soit 1 bit pour le signe s, 11
bits pour l’exposant décalé e et 52 bits pour la mantisse tronquée m : x = (−1)s × (1,m)× 2e−1023.

1. Comment est codé le nombre réel 1,0? Quel est le plus petit flottant α strictement supérieur à 1 que
l’on peut coder? Que vaut α− 1?

2. Dans l’interpréteur Python, importer le module sys (instruction import sys) ;
écrire sys.float_info et analyser la réponse.

3. Comment est codé le plus grand flottant ? Que valent sa mantisse et son exposant ?

Exercice 7 : codage d’un flottant.
Ecrire une fonction qui détermine et renvoie le codage d’un flottant exprimé en base dix. L’entrée sera

de type float et la sortie de type str.
Les étapes :

1. La variable x a pour valeur le flottant entré en paramètre de la fonction.

2. On détermine le signe de x et que l’on stocke dans s=’0’ ou s=’1’ et on change x = |x|.
3. On calcule l’exposant et la mantisse. Pour cela si x >= 2 on fait des divisions par 2 successives, si
x < 1 on fait des multiplications par 2 successives, en remplaçant à chaque fois la valeur de x par le
résultat obtenu, et dans les deux cas jusqu’à obtenir un nombre x tel que 1 ≤ x < 2 ; l’exposant est
alors le nombre de divisions ou de multiplications effectuées et la mantisse est le nombre x final.

4. On calcule l’exposant décalé que l’on code en binaire sur 11 bits (voir exercice 2). Le résultat est
stocké dans une chaîne b.

5. On calcule la mantisse tronquée x = x − 1 que l’on doit alors écrire en binaire sur 52 bits et que
l’on stocke dans une chaîne m. Pour cela on multiplie x par 2 (x = 2 ∗ x) ; si x ≥ 1, on ajoute ’1’ à
m et on retranche 1 à x, sinon on ajoute ’0’ à m; on reproduit ce schéma 52 fois.

6. On renvoie la chaîne concaténée s + b + m.

Exercice 8 : accumulations d’erreurs d’arrondis.
Commenter le code suivant :

>>> (0.1+0.1+0.1-0.3)*10**20
5551.115123125783

1. En utilisant la fonction Decimal du module decimal, donner la représentation décimale de 0.1,
puis vérifier avec le programme de l’exercice 7 que la représentation sur 64 bits de 0,1 est
0 011 1111 1011 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010.

2. Comparer les quantités Decimal(0.3), Decimal(0.1+0.1+0.1)
et Decimal(0.1)+Decimal(0.1)+Decimal(0.1).

Note : pour travailler avec des fractions exactes, on utilise le module fractions qui permet de
manipuler des objets modélisant les fractions. On utilise la fonction Fraction de la manière suivante :

Serge Bays 2 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

from fractions import Fraction as f
>>> print(f(2,3))
2/3
>>> f(2,3)+f(5,2)
Fraction(19, 6)
>>> 0.1==f(1,10)
False
>>> f(1,10)+f(1,10)+f(1,10)
Fraction(3, 10)

Serge Bays 3 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

	Nombres entiers naturels
	Nombres entiers relatifs
	Nombres réels

