
http://mathematice.fr

Informatique en CPGE (2018-2019)
Résolution d’une équation :

méthodes de dichotomie et de Newton

1 Recherche dichotomique

L’algorithme de recherche dichotomique ("bisection search" en anglais) consiste à partir de deux
valeurs a et b encadrant une solution unique d’une équation f(x) = 0, à tester si la solution est plus grande
ou plus petite que m = (a + b)/2. Suivant le résultat, on restreint la recherche à l’intervalle [a;m] ou à
l’intervalle [m; b]. On reproduit ce schéma tant que l’amplitude de l’intervalle (qui est divisée par deux à
chaque étape) est supérieure à une précision epsilon donnée.

Algorithme : les variables sont a et b, les bornes de l’intervalle, f la fonction (qui change de signe
entre a et b), epsilon la précision, m la valeur courante du milieu.

Tant que b - a > epsilon
m prend la valeur (a+b)/2
Si f(m) et f(a) sont de même signe alors

a prend la valeur m
sinon

b prend la valeur m

Un programme en Python :

def zero_dic(f,a,b,eps):
while b-a>eps:

m=(a+b)/2
if f(a)*f(m)>0:

a=m
else:

b=m
return (a+b)/2

L’amplitude de l’intervalle étant divisée par deux à chaque étape, on gagne un bit de précision à
chaque passage dans la boucle while. L’intérêt de cette méthode est que les conditions sur la fonction f ne
sont pas trop exigeantes : être continue et changer de signe.

Analyse de l’algorithme :
Il est nécessaire de démontrer la validité de cet algorithme puis d’étudier sa complexité.

Terminaison : il suffit de remarquer qu’après k étapes, b − a a été divisé par 2k et comme
b− a
2k

a
pour limite 0 quand k tend vers l’infini, pour tout ε > 0, il existe une valeur de k à partir de laquelle toutes
les amplitudes des intervalles seront inférieures à ε.

Correction : on utilise l’invariant f(a)f(b) ≤ 0. Cet invariant est bien vérifié avant l’entrée dans la
boucle par hypothèse. Ensuite on suppose que cet invariant est vérifié avant un passage dans la boucle : si
f(a) et f(m) sont de même signe, alors a prend la valeur de m et donc garde un signe contraire à celui de

Serge Bays 1 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

b ; si f(a) et f(m) sont de signe contraire, alors b prend la valeur de m et donc garde un signe contraire à
celui de a.

Ainsi les valeurs de a et b en sortie sont les bornes d’un intervalle d’amplitude maximale ε telles que
f(a)f(b) ≤ 0. D’après le théorème des valeurs intermédiaires, la solution appartient à cet intervalle.

Complexité : si on ne tient pas compte de la complexité des calculs de f(m) lors des appels à la

fonction, on remarque que la boucle est exécutée k fois si et seulement si
b− a
2k

≤ ε <
b− a
2k−1

, soit

b− a
ε
≤ 2k < 2

b− a
ε

. On obtient alors ln

(
b− a
ε

)
≤ k ln 2 < ln 2 + ln

(
b− a
ε

)
ce qui nous donne

log2

(
b− a
ε

)
≤ k < 1+ log2

(
b− a
ε

)
. Par exemple si b− a = 1 et ε = 2−p alors k = p ; ce qui justifie

qu’on gagne un bit de précision à chaque étape.

2 Méthode de Newton

2.1 Principe

On cherche la solution de l’équation f(x) = 0, c’est-à-dire l’abscisse du point d’intersection de la
courbe C représentant f avec l’axe des abscisses. Sous certaines conditions sur f , on part d’une valeur x0
et on détermine l’abscisse x1 du point d’intersection de la tangente T1 à la courbe C au point d’abscisse x0

avec l’axe des abscisses ; x1 est solution de l’équation : f ′(x0)(x−x0)+f(x0) = 0. Donc x1 = x0−
f(x0)

f ′(x0)
et x1 est une valeur approchée de x. On recommence un certain nombre de fois avec xn et la tangente Tn

au point d’abscisse xn−1. Soit xn = xn−1 −
f(xn−1)

f ′(xn−1)
; la suite (xn) converge vers la solution x.

2.2 Exemples

2.2.1 Calcul de l’inverse

On détermine la solution x =
1

a
de l’équation

1

x
− a = 0. On a f ′(x) = −

1

x2
et :

xn = xn−1 −
f(xn−1)

f ′(xn−1)
⇐⇒ xn = xn−1 −

1

xn−1
− a

− 1

x2n−1

⇐⇒ xn = xn−1 +

(
1

xn−1
− a

)
x2n−1

⇐⇒ xn = xn−1 + xn−1 − ax2n−1
⇐⇒ xn = xn−1(2− axn−1)

2.2.2 Calcul de la racine carrée

On détermine la solution de l’équation x2 − a = 0. On a f(x) = x2 − a et f ′(x) = 2x.

xn = xn−1 −
f(xn−1)

f ′(xn−1)
⇐⇒ xn = xn−1 −

x2n−1 − a
2xn−1

⇐⇒ xn =
x2n−1 + a

2xn−1

Serge Bays 2 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

⇐⇒ xn =
1

2

(
xn−1 +

a

xn−1

)
Programme :

def racine(a,x,eps):
while abs(x*x-a)>eps:

x=0.5*(x+a/x)
return x

On peut compléter le code précédent afin de compter le nombre d’itérations et comparer l’efficacité
de cet algorithme avec celle de la recherche dichotomique. Avec la recherche dichotomique, pour une
précision de 10−4, si l’intervalle de départ a une amplitude de 1, il est nécessaire de le diviser en deux n
fois avec 2n ≥ 104, soit n ≥ 4 ln 10/ ln 2 ce qui nous donne n = 14. Avec la méthode de Newton, trois
itérations sont suffisantes. Le nombre de décimales correctes est multiplié par deux à chaque étape.

2.3 Cas général

Afin de calculer les termes de la suite (xn) définis par xn = xn−1 −
f(xn−1)

f ′(xn−1)
il est nécessaire de

définir dans le programme la fonction f et la fonction f ′, que l’on notera df. La variable cpt est un compteur
permettant d’afficher le nombre d’itérations nécessaires pour obtenir la précision souhaitée. Mais nous ne
connaissons pas à l’avance le nombre d’itérations et il y a des cas où la suite diverge, donc il est important
de limiter ce nombre ; c’est le rôle de l’argument N dans le programme qui suit.

def newton(f,x,df,eps,N=100):
cpt=0
while abs(f(x))>eps and cpt<=N:

x=x-f(x)/df(x)
cpt+=1

return x,cpt

On peut améliorer ce code de plusieurs manières.
— Dans la boucle, on évalue deux fois la quantité f(x). Sur de petits exemples cela n’a pas une

grande importance, mais dans le cas de fonctions beaucoup plus compliquées, faire deux fois le
même travail peut ne pas être négligeable. Nous pouvons donc stocker la valeur f(x) dans une
variable locale.

— Un problème sérieux est le risque de diviser par zéro ou par un nombre très petit qui pourrait créer
une très grande valeur pour x et faire diverger la méthode. C’est pourquoi nous devons tester les
valeurs de f ′(x) et afficher un avertissement si une valeur devient très petite.

— Il est aussi intéressant de stocker dans une liste les valeurs x et f(x) obtenues à chaque itération
pour les imprimer ou les utiliser dans un graphique illustrant le comportement de la méthode de
Newton. Pour cela nous pouvons ajouter en argument un booléen indiquant si nous stockons ou
pas ces valeurs.

Voici un code optimisé :

def newton(f,x,df,eps,N=100,save=False):
valeur_f=f(x)
cpt=0
if save: valeurs=[(x,valeur_f)]

Serge Bays 3 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

while abs(valeur_f)>eps and cpt<=N:
valeur_df=df(x)
if abs(valeur_df)<1E-14:

print("Attention, valeur de f’ trop petite")
break

x=x-valeur_f/valeur_df
cpt+=1
valeur_f=f(x)
if save: valeurs.append((x,valeur_f))

if save:
return x,cpt,valeurs

else:
return x,cpt

3 Complément

3.1 Méthode de la sécante

Le calcul de f ′(x) peut être compliqué et si nous devons résoudre plusieurs équations, il peut être in-
téressant de faire effectuer ce calcul par le programme. Pour cela nous pouvons utiliser une approximation

en remplaçant f ′(x) par
f(x+ h)− f(x− h)

2h
avec h de l’ordre de 10−6 par exemple.

Cette méthode est une variante de la "méthode de la sécante".

def Df(f,x):
h=1e-6
return (f(x+h)-f(x-h))/(2*h)

On remplace alors df par Df dans le code de la fonction newton.

3.2 Optimisation avec eval et exec

Plutôt que modifier la fonction f dans le code du programme, on peut faire en sorte que le programme
demande à l’utilisateur d’entrer l’expression de la fonction au clavier. On importe au préalable toutes les
fonctions du module math (sin, cos, exp, . . .). Puis on utilise les fonctions eval et exec.

Le code suivant doit alors se trouver au début du programme.

from math import *
formule=input("entrer l’expression de la fonction")

code="""
def f(x):

return eval(formule)
"""
exec(code)

D’une certaine manière, l’instruction exec(code) remplace la partie "code= """ . . . """ par les
instructions se trouvant entre les guillemets. La fonction eval évalue le contenu de la chaîne "formule".
(Par exemple eval(’2+3’) renvoie 5).

Serge Bays 4 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

4 Utilisation de la bibliothèque scipy

Le module optimize de la bibliothèque scientifique scipy contient les fonctions bisect et
newton dans lesquelles sont programmées respectivement la méthode de dichotomie et la méthode de
Newton.

Les fonctions root et fsolve permettent également de trouver les valeurs approchées des zéros
d’une fonction.

import scipy.optimize

def f(x):
return x**2-2

a=1
b=2

x=scipy.optimize.bisect(f,a,b)
print(x)

x=scipy.optimize.newton(f,a)
print(x)

x=scipy.optimize.fsolve(f,a)
print(x)

x=scipy.optimize.root(f,a)
print(x)

Serge Bays 5 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

	Recherche dichotomique
	Méthode de Newton
	Principe
	Exemples
	Calcul de l'inverse
	Calcul de la racine carrée

	Cas général

	Complément
	Méthode de la sécante
	Optimisation avec eval et exec

	Utilisation de la bibliothèque scipy

