
http://mathematice.fr

Informatique en CPGE (2018-2019)
Résolution d’un système linéaire inversible :

méthode de Gauss

1 Matrices

Nous pouvons utiliser des listes pour représenter des matrices. Une liste composée de n listes de
longueurs p représente une matrice (n, p) (n lignes et p colonnes).

1.1 Création

Par exemple la matrice

 2 2 −4
5 13 7
4 8 1

 peut se définir en Python par le code suivant :

matrice=[[2,2,-4],[5,13,7],[4,8,1]]
a=matrice[1][2]
print(a) # affiche l’élément 7

On peut aussi créer une liste vide matrice, puis créer les listes ligne une par une en les ajoutant
à la liste matrice :

matrice=[]
for i in range(n): # n lignes

ligne=[. . .] # une ligne de longueur p
matrice.append(ligne)

On pourrait envisager une autre possibilité en créant une liste composée de n listes de longueurs p où
chaque élément est initialisé avec la valeur None ou la valeur 0.

mat=2*[3*[None]] # initialisation de la matrice

for i in range(2):
for j in range(3):

mat[i][j]=i+2*j # par exemple
print(mat[i])

print(mat)

Ce code affiche

[0, 2, 4]
[1, 3, 5]
[[1, 3, 5], [1, 3, 5]] # la première ligne a été modifiée

Donc cela ne fonctionne pas : la modification de la deuxième ligne s’est répercutée sur la première.

Un code qui fonctionne est :

Serge Bays 1 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

mat=2*[None]
for i in range(2):

mat[i]=3*[None]

for i in range(2):
for j in range(3):

mat[i][j]=i+2*j

qui construit la matrice souhaitée :

[[0, 2, 4], [1, 3, 5]]

Pour la suite, nous allons définir une fonction matrice qui crée, avec le code précédent, une matrice
nulle (n, p) dont on pourra modifier les coefficients à volonté.

def matrice(n,p):
mat=n*[None]
for i in range(n):

mat[i]=p*[0]
return mat

ou bien, avec une construction en compréhension :

def matrice(n,p):
return [[0 for j in range(p)] for i in range(n)]

1.2 Opérations classiques

Attention, pour une matrice (n, p), les lignes sont numérotées de 0 à n−1 et les colonnes de 0 à p−1.

Somme de deux matrices
Pour faire la somme de deux matrices (n, p), on utilise deux boucles for imbriquées. On peut alors

définir une fonction somme ainsi :

def somme(m1,m2):
n=len(m1) # on a besoin du nombre de lignes
p=len(m1[0]) # et du nombre de colonnes
mat=matrice(n,p) # une matrice nulle
for i in range(n): # boucle sur les lignes

for j in range (p): # boucle sur les colonnes
mat[i][j]=m1[i][j]+m2[i][j]

return mat

La matrice somme peut aussi se définir en compréhension en écrivant :
return [[m1[i][j]+m2[i][j] for j ...] for i...]

Multiplication d’une matrice par un réel
Le principe est le même que pour la somme :

Serge Bays 2 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

def multiple(m,k):
n=len(m)
p=len(m[0])
mat=matrice(n,p)
for i in range(n): # boucle sur les lignes

for j in range (p): # boucle sur les colonnes
mat[i][j]=k*m[i][j]

return mat

Définition en compréhension :

def multiple(m,k):
n=len(m)
p=len(m[0])
return [[k*u[j] for j in range(p)] for u in m]

Produit de deux matrices
Pour le produit de deux matrices, c’est un peu plus compliqué et il faut vérifier que le nombre de

colonnes de la première matrice est égal au nombre de lignes de la deuxième matrice.

def produit(m1,m2):
n=len(m1)
p=len(m1[0])
q=len(m2)
r=len(m2[0])
if p!=q: return [None]
mat=matrice(n,r)
for i in range(n): # boucle sur les lignes

for j in range (r): # boucle sur les colonnes
for k in range(p):

mat[i][j]+=m1[i][k]*m2[k][j]
return mat

2 Autres opérations

Pour appliquer l’algorithme du pivot de Gauss, il est nécessaire de définir de nouvelles opérations.
On se placera dans le cas où le système a une solution unique.

2.1 Recherche du pivot

A chaque étape, on recherche le plus grand pivot (en valeur absolue).

ligne 0
ligne 1
ligne 2
ligne s

ligne s+1
ligne s+2

. . .
ligne n-1



2 2 −4 6 5 4 7 ... 2
13 7 3 −5 8 6 ... 4

1 −5 2 4 −3 ... 9
3 −5 2 8 ... 7
1 3 2 1 ... 9
5 5 3 2 ... 6
...
4 −3 2 7 ... −4


Serge Bays 3 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

Le pivot provisoire sur l’exemple est m[s][s] = 3, et on cherche le maximum en valeur absolue des
nombres m[i][s] pour i variant de s+1 à n-1. Dans le cas où le système a une solution unique, on démontre
que ces nombres ne sont pas tous nuls.

La fonction pivot prend en argument une matrice et le numéro du pivot que l’on cherche, (0 pour
la première étape), et renvoie le numéro de la ligne contenant le pivot qui va être utilisé.

def pivot(m,s):
n=len(m)
np=s # numéro du pivot provisoire
for i in range(s+1,n): # boucle sur les lignes restantes

if abs(m[i][s])>abs(m[np][s]):
np=i

return np

2.2 Echange de lignes

Pour échanger deux lignes d’une matrice, sans modifier la matrice d’origine du système, nous créons
une nouvelle matrice, copie de la matrice passée en argument.

La fonction permute prend en argument une matrice et les numéros des deux lignes à échanger :

def permute(m,i,j):
n=len(m)
p=len(m[0])
mat=[[u[j] for j in range(p)] for u in m] # copie
for k in range (p): # boucle sur les colonnes

mat[i][k],mat[j][k]=mat[j][k],mat[i][k]
return mat

2.3 Transvection

Les transvections sont les transformations centrales dans l’algorithme du pivot de Gauss.
Si s est le numéro du pivot utilisé, on remplace chaque ligne m[i], pour i variant de s+1 à n-1, par

m[i]- k*m[s], où k=m[i][s]/m[s][s], soit Li ←− Li −
ai,s

as,s
Ls.

Avec la notation matricielle habituelle, l’algorithme est le suivant :
Pour i variant de s+1 à n-1

k =
ai,s

as,s
Pour j variant de s à p-1

ai,j = ai,j − k × as,j

def transvection(m,s): # s numéro du pivot utilisé
n=len(m)
p=len(m[0])
mat=[[u[j] for j in range(p)] for u in m] # copie
for i in range(s+1,n): # boucle sur les lignes

k=m[i][s]/m[s][s]
for j in range (s,p): # boucle sur les colonnes

Serge Bays 4 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

mat[i][j]=mat[i][j]-k*mat[s][j]
return mat

3 Algorithme du pivot de Gauss

Le principe de l’algorithme du pivot de Gauss est d’exécuter des tâches répétitives qui fournissent à
chaque étape un système équivalent dans le but d’obtenir finalement un système triangulaire.

Voici un exemple de système triangulaire :


2x+ y − 3z = 4
−2y + 2z = 8

5z = 15

Algorithme avec la recherche du meilleur pivot :

Pour s variant de 0 à n-2
Recherche du pivot : p=maxs≤i≤n−1|ai,s|
Si p différent de s

Echange des lignes s et p
Pour i variant de s+1 à n-1

k =
ai,s

as,s
Pour j variant de s à p-1

ai,j = ai,j − k × as,j

3.1 Résolution d’un système triangulaire

On résout un système triangulaire de bas en haut : on commence par la dernière équation puis à
chaque étape, pour résoudre une équation, on substitue aux inconnues d’une ligne les valeurs trouvées
dans les lignes inférieures.

La matrice associée au système précédent est

 2 1 −3 4
0 −2 2 8
0 0 5 15


Nous allons définir une fonction solution qui prend en argument une telle matrice et renvoie la

solution du système associé. Si la solution est (x0, x1, . . . , xn−1), l’algorithme est le suivant :

Pour i variant de n-1 à 0

xi =
1

ai,i

ai,p−1 −
p−2∑

j=i+1

ai,jxj



def solution(m):
n=len(m)
p=len(m[0])
sol=n*[0] # création d’une solution
for i in range(n-1,-1,-1): # boucle sur les lignes

sol[i]=m[i][p-1]
for j in range(i+1,p-1):

Serge Bays 5 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice.fr

sol[i]-=m[i][j]*sol[j]
sol[i]=sol[i]/m[i][i]

return sol

3.2 Programme final

Pour résoudre un système linéaire, il n’y a plus qu’à assembler les fonctions qui viennent d’être
étudiées.

On définit une fonction gauss qui prend en argument la matrice du système et renvoie la solution
sous la forme d’une liste (que l’on peut considérer comme une matrice colonne).

def gauss(mat):
n=len(mat)
for s in range(n-1): # le dernier pivot est à l’avant dernière ligne

piv=pivot(mat,s)
if piv!=s:

mat=permute(mat,s,piv)
mat=transvection(mat,s)

sol=solution(mat)
return sol

Complexité
La résolution finale du système nécessite n divisions et n(n− 1)/2 multiplications et soustractions.
Pour s donné, une transvection nécessite n− 1− s divisions pour le calcul de k,
puis (n− 1− s)(n− s+ 1) multiplications et soustractions pour les nouvelles lignes ;
s variant de 0 à n− 2, on obtient donc (n− 1)n/2 divisions,

et
n−1∑
1

u(u+ 2) =

n−1∑
1

u2 +
n−1∑
1

2u = (n− 1)n(2n− 1)/6 + (n− 1)n multiplications et soustrac-

tions, donc au total n(n+ 1)/2 divisions et n3/3 + n2 − 4n/3 multiplications et soustractions.
La complexité est en O(n3).

4 Utilisation de NumPy

La bibliothèque NumPy contient un module linalg pour l’algèbre linéaire.
Par exemple pour résoudre un système MX=C :

import numpy as np

M=[[1,1,1],[1,0,-1],[-1,1,0]]
C=[[6],[-2],[1]]

X=np.linalg.solve(M,C)

print(X) # solution : [1, 2, 3]

M=[[2,2,-3],[-2,-1,-3],[6,4,4]]
C=[[2],[-5],[16]]

X=np.linalg.solve(M,C)

print(X) # solution [-14, 21, 4]

Serge Bays 6 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

	Matrices
	Création
	Opérations classiques

	Autres opérations
	Recherche du pivot
	Echange de lignes
	Transvection

	Algorithme du pivot de Gauss
	Résolution d'un système triangulaire
	Programme final

	Utilisation de NumPy

