http://mathematice. fr

Informatique en CPGE (2018-2019)
Résolution d’un systeme linéaire inversible :
méthode de Gauss

1 Matrices

Nous pouvons utiliser des listes pour représenter des matrices. Une liste composée de n listes de
longueurs p représente une matrice (n, p) (n lignes et p colonnes).

1.1 Création

2 2 -4
Par exemple la matrice | 5 13 7 peut se définir en Python par le code suivant :
4 8 1

matrice=[[2,2,-4],[5,13,7],[4,8,1]]
a=matrice[l] [2]
print (a) # affiche 1’élément 7

On peut aussi créer une liste vide mat rice, puis créer les listes 1igne une par une en les ajoutant
alalistematrice:

matrice=[]
for i in range(n): # n lignes
ligne=[. . .] # une ligne de longueur p

matrice.append (ligne)

On pourrait envisager une autre possibilité en créant une liste composée de n listes de longueurs p ol
chaque élément est initialisé avec la valeur None ou la valeur 0.

mat=2+[3x[None]] # initialisation de la matrice

for 1 in range(2):
for j in range (3):
mat [1] [J]=i+2x7 # par exemple
print (mat[i])
print (mat)

Ce code affiche
[0, 2, 4]
[1, 3, 5]
[[1, 3, 51, [1, 3, 5]]1 # la premiére ligne a été modifiée

Donc cela ne fonctionne pas : la modification de la deuxieme ligne s’est répercutée sur la premiere.

Un code qui fonctionne est :

Serge Bays 1 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice. fr

mat=2x [None]
for 1 in range(2):
mat [1]=3+* [None]

for 1 in range(2):
for j in range (3):
mat[i] [J]=1+2*]

qui construit la matrice souhaitée :

Pour la suite, nous allons définir une fonction mat rice qui crée, avec le code précédent, une matrice
nulle (n, p) dont on pourra modifier les coefficients a volonté.

def matrice(n,p):
mat=n+ [None]
for i in range (n) :
mat [1]=p=*[0]
return mat

ou bien, avec une construction en compréhension :

def matrice (n,p):
return [[0 for j in range(p)] for i in range(n)]

1.2 Opérations classiques

Attention, pour une matrice (7, p), les lignes sont numérotées de 0 a n — 1 et les colonnes de 0 a p— 1.

Somme de deux matrices
Pour faire la somme de deux matrices (n,p), on utilise deux boucles for imbriquées. On peut alors
définir une fonction somme ainsi :

def somme (ml,m2) :
n=len (ml) # on a besoin du nombre de lignes
p=len(ml[0]) # et du nombre de colonnes
mat=matrice(n,p) # une matrice nulle
for i in range(n): # boucle sur les lignes
for j in range (p): # boucle sur les colonnes
mat [1] [J]=m1[i] [J]+m2[1i][]]
return mat

La matrice somme peut aussi se définir en compréhension en écrivant :
return [[ml1[i][j]+m2[i][]j] for J ...] for i...]

Multiplication d’une matrice par un réel
Le principe est le méme que pour la somme :

Serge Bays 2 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice. fr

def multiple (m, k) :
n=len (m)
p=len(m[0])
mat=matrice (n,p)
for 1 in range(n): # boucle sur les lignes
for j in range (p): # boucle sur les colonnes
mat [i] [§]=k*m[i] [§]
return mat

Définition en compréhension :

def multiple (m, k) :
n=1len (m)
p=len(m([0])
return [[kxu[j] for j in range(p)] for u in m]

Produit de deux matrices
Pour le produit de deux matrices, c’est un peu plus compliqué et il faut vérifier que le nombre de
colonnes de la premiere matrice est égal au nombre de lignes de la deuxieéme matrice.

def produit (ml,m2) :
n=len (ml)
p=len(ml[0])
g=len (m2)
r=len (m2[0])
if p!=g: return [None]
mat=matrice (n, r)
for 1 in range(n): # boucle sur les lignes
for j in range (r): # boucle sur les colonnes
for k in range(p):
mat [1] [§]+=ml[i] [k]*m2[k] [7]
return mat

2 Autres opérations

Pour appliquer 1’algorithme du pivot de Gauss, il est nécessaire de définir de nouvelles opérations.
On se placera dans le cas ol le systéme a une solution unique.

2.1 Recherche du pivot

A chaque étape, on recherche le plus grand pivot (en valeur absolue).

ligne 0 2 2 -4 6 5 4 7 2
ligne 1 3 7 3 -5 8 6 4
ligne 2 1 -5 2 4 -3 9
ligne s 3 -5 2 8 7
ligne s+1 1 3 2 1 9
ligne s+2 S 5 3 2 6
ligne n-1 4 -3 2 7 ... —4

Serge Bays 3 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice. fr

Le pivot provisoire sur 1I’exemple est m[s][s] = 3, et on cherche le maximum en valeur absolue des
nombres m[i][s] pour i variant de s+1 a n-1. Dans le cas ol le systéme a une solution unique, on démontre
que ces nombres ne sont pas tous nuls.

La fonction pivot prend en argument une matrice et le numéro du pivot que I’on cherche, (0 pour
la premiere étape), et renvoie le numéro de la ligne contenant le pivot qui va étre utilisé.

def pivot (m,s):
n=len (m)
np=s # numéro du pivot provisoire
for 1 in range(s+l,n): # boucle sur les lignes restantes
if abs(m[i][s])>abs(m[np][s]):
np=1i
return np

2.2 Echange de lignes

Pour échanger deux lignes d’une matrice, sans modifier la matrice d’origine du systeme, nous créons

une nouvelle matrice, copie de la matrice passée en argument.
La fonction permute prend en argument une matrice et les numéros des deux lignes a échanger :

def permute (m,i, j):

n=1len (m)

p=len(m[0])

mat=[[u[]j] for J in range(p)] for u in m] # copie
for k in range (p): # boucle sur les colonnes

mat [1] [k],mat [J] [k]l=mat [J] [k],mat [i] [k]
return mat

2.3 Transvection

Les transvections sont les transformations centrales dans I’algorithme du pivot de Gauss.
Si s est le numéro du pivot utilisé, on remplace chaque ligne ml[i], pour i variant de s+1 a n-1, par

L.

Qj,s

m[i]- k*m([s], ou k=m[i][s]/m[s][s], soit L; «+— L; —
Qs s
Avec la notation matricielle habituelle, 1’algorithme est le suivant :
Pour i variant de s+1 a n-1
p o i

Us,s
Pour j variant de s a p-1

aij = aij —k X as;

def transvection(m,s): # s numéro du pivot utilisé
n=len (m)
p=len (m[0])
mat=[[u[]Jj] for J in range(p)] for u in m] # copie
for 1 in range(s+1l,n): # boucle sur les lignes
k=m[i] [s]/m[s] [s]
for j in range (s,p): # boucle sur les colonnes

Serge Bays 4 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice. fr

mat [1] [j]l=mat[i] [j]-k*mat([s][7]
return mat

3 Algorithme du pivot de Gauss

Le principe de I’algorithme du pivot de Gauss est d’exécuter des taches répétitives qui fournissent a
chaque étape un systéme équivalent dans le but d’obtenir finalement un systéme triangulaire.

2r4+y—32z = 4
Voici un exemple de systéme triangulaire : —2y+2z = 8
5z = 15

Algorithme avec la recherche du meilleur pivot :

Pour s variant de 0 a n-2
Recherche du pivot : p=maxg<j<n—1|a;s|
Si p différent de s
Echange des lignes s et p
Pour i variant de s+1 a n-1
= Qj,s

Qs s
Pour j variant de s a p-1
aij = aij —k xas;

3.1 Résolution d’un systeme triangulaire

On résout un systeme triangulaire de bas en haut : on commence par la derniere équation puis a
chaque étape, pour résoudre une équation, on substitue aux inconnues d’une ligne les valeurs trouvées
dans les lignes inférieures.

2 1 -3 4
La matrice associée au systeme précédentest [0 —2 2 8
0 0 &5 15

Nous allons définir une fonction solution qui prend en argument une telle matrice et renvoie la
solution du systeme associé. Si la solution est (xq, x1, . . ., T,—1), ’algorithme est le suivant :

Pour i variant de n-1 a0

1 p2
Ty, = — ai,p_l — Z a@j:rj
Qi =
Jj=i+1
def solution (m) :
n=len (m)
p=len(m[0])
sol=nx[0] # création d’une solution
for i in range(n-1,-1,-1): # boucle sur les lignes
sol[i]=m[i] [p—1]
for j in range(i+l,p-1):

Serge Bays 5 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

http://mathematice. fr

sol[i]—-=m[i] [Jj]*sol[]]
sol[i]l=sol[i]/m[i] [1]
return sol

3.2 Programme final

Pour résoudre un systeme linéaire, il n’y a plus qu’a assembler les fonctions qui viennent d’étre
étudiées.

On définit une fonction gauss qui prend en argument la matrice du systéme et renvoie la solution
sous la forme d’une liste (que 1’on peut considérer comme une matrice colonne).

def gauss (mat) :
n=len (mat)
for s in range(n-1): # le dernier pivot est a 1l’avant derniere ligne
piv=pivot (mat, s)
if piv!=s:
mat=permute (mat, s, piv)
mat=transvection (mat, s)
sol=solution (mat)
return sol

Complexité

La résolution finale du systéme nécessite n divisions et n(n — 1)/2 multiplications et soustractions.
Pour s donné, une transvection nécessite n — 1 — s divisions pour le calcul de &,

puis (n — 1 — s)(n — s + 1) multiplications et soustractions pour les nouvelles lignes ;

s variant de 0 a n — 2, on obtient donc (n — 1)n/2 divisions,

n—1 n—1 n—1
et Z u(u +2) = Z u® + Z 2u=(n—1)n(2n —1)/6 + (n — 1)n multiplications et soustrac-
1 1 1

tions, donc au total n(n + 1)/2 divisions et n3/3 + n? — 4n /3 multiplications et soustractions.
La complexité est en O(n?).

4 Utilisation de NumPy

La bibliotheque NumPy contient un module 1inalg pour I’algebre linéaire.
Par exemple pour résoudre un systeme MX=C :

import numpy as np

M=[(1,1,1]1,(1,0,-1],[-1,1,0]]
C=[[6],[-2],[1]]

X=np.linalg.solve (M, C)
print (X) # solution : [1, 2, 3]

M=[[2,2,-3],[-2,-1,-3],1[6,4,4]]
C=[[2],[-51,[16]]

X=np.linalg.solve (M, C)

print (X) # solution [-14, 21, 4]

Serge Bays 6 Lycée Les Eucalyptus

http://mathematice.fr
http://mathematice.fr

	Matrices
	Création
	Opérations classiques

	Autres opérations
	Recherche du pivot
	Echange de lignes
	Transvection

	Algorithme du pivot de Gauss
	Résolution d'un système triangulaire
	Programme final

	Utilisation de NumPy

